Long Term Archiving with 3D PDF

3D PDF Consortium

- Jerry McFeeters Executive Director
- Phil Spreier Technical Director

3D PDF Consortium

Global Product Data Interoperability Summit | 2015

A *community* dedicated to driving adoption of 3D PDF enabled solutions through:

- Defining industry needs and priorities
- Creating reference implementations and other resources
- Providing input to the standards process
- Raising awareness

A worldwide, non-profit, member organization

Open to all companies

3D PDF Consortium - Members

Global Product Data Interoperability Summit | 2015

3D PDF Consortium - Organization

Global Product Data Interoperability Summit | 2015

Board of Directors

Governance, Recruiting

Committees

Executive

Mission, Vision, Strategic Direction

Industry

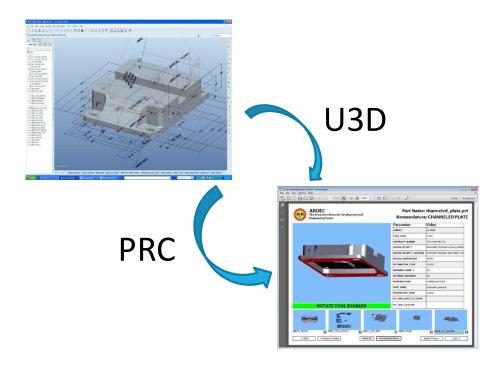
- Define industry needs and priorities
- Develop processbased use cases
- Assign priorities to technical committee work

Technical

- Project goals and objectives
- Project plans, participation, funding
- Implementers forum
- ISO technical submissions

Communications

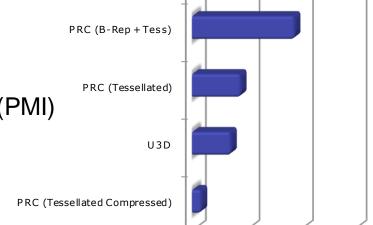
- Events planning
- Publications
- Solicit and propose case studies
- Presentations
- Blog/article submissions



What is 3D PDF?

Global Product Data Interoperability Summit | 2015

Any PDF file containing data defined in either Universal 3D (U3D), or Product Representation Compact (PRC) **formats**


PDF – 3D Content

Global Product Data Interoperability Summit | 2015

PRC

Engineering Format

- Product Structure
- Tessellation
- Precise B-Rep
- Product and Manufacturing Information (PMI)
- Highly compact

20%

40%

60%

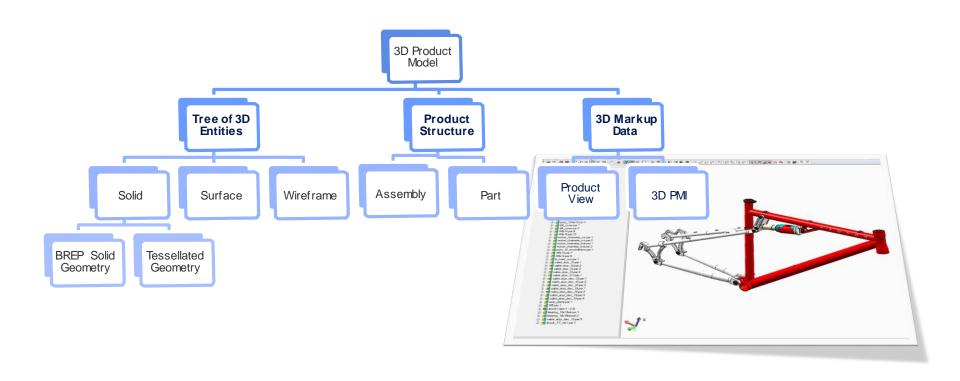
100%

O riginal File

U₃D

Presentation Format

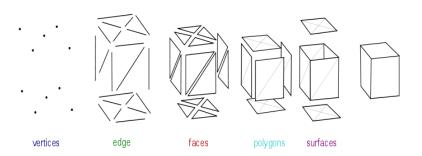
- ECMA standard (ECMA 363-3)
- Only supports tessellated data
- No longer actively developed



What is "Product Structure?"

Global Product Data Interoperability Summit | 2015

PRC Content - Physical

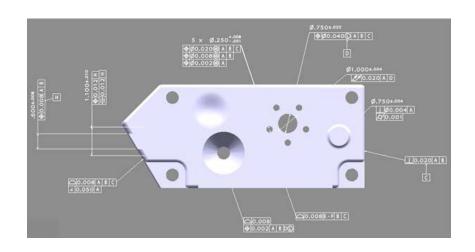

Global Product Data Interoperability Summit | 2015

Topology

 Complete topological description

Geometry

- Designed to represent geometry from ALL CAD systems
- Points, coordinate systems, polyhedra, curves, surfaces
- Maintains period and parametric definitions of curves and surfaces



PRC Content - PMI

Global Product Data Interoperability Summit | 2015

Full visual PMI

- Annotations and symbols
- Can be associated to 3D elements

PRC Content - Metadata

Global Product Data Interoperability Summit | 2015

Name

 Key value pairs representing attributes (i.e. author, creation date, release date)

Persistent ID

 Two types of unique identification

Style

 Transparency, rendering mode, materials

Layer

 Logical grouping of elements

Show/hide

Enables visibility

Coordinate systems

 Part based or local based

Stored as XML

Ease of access

PDF Structure with 3D

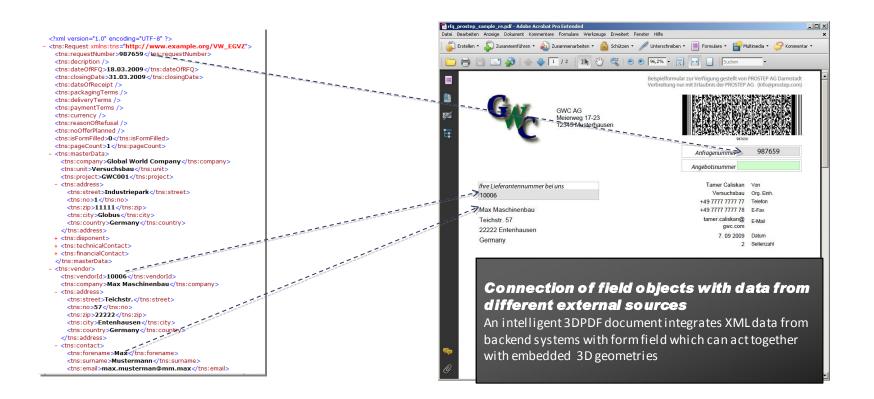
Global Product Data Interoperability Summit | 2015

```
43 20: (14) [156 0 R]
                      /T:Annot /S:Widget
# 43 21: (14) [157 0 R]
                      /T:Annot /S:Widget
= 43 22: (11) [158 0 R] /T:Annot /S:30
 + (()) 3DA: (2)
 □ «» 3DD: (6) [1240 R] /T:3D /S:PRC
   T:3DAnimationStyle /S:Linear
     45 Length: 1945587
    (2) [125 0 R]
      ✓ Subtype: PRC
       / Type: 3D
    □ $1 VA: (12) [171 0 R]
       □ 40 0: (7) [172 0 R]
                           /T:3DView
         ⊕ [] C2W: (12)
           4.5 CO: 7184.52002
           () IN: 8c6effb7-2262-49b5-a8c0-a27dcfd5fad7
         # 43 P: (4) [3570 R] /S:O
           Type: 3DView
           () XN: Left
       # 43 1: (7) [173 0 R]
                            /T:3DView
       # 43 2: (7) [1740 R]
                            /T:3DView
       # 43 3: (7) [175 0 R]
                            /T:3DView
       # 43 4: (7) [176 0 R]
                            /T:3DView
       1 43 5: (7) [177 0 R]
                            /T:3DView
       # 43 6: (12) [178 0 R]
                            /T:3DView
       1 4 7: (12) [179 0 R]
                             /T:3DView
                             /T:3DView
       # 43 8: (12) [180 0 R]
       1 43 9: (12) [1810 R] /T:3DView
       # 43 10: (12) [182 0 R]
       ⊟ 43 11: (12) [183 0 R] /T:3DView
         ⊕ [] C2W: (12)
           1 In: ZONE POINTS, 9b 4fe59c974ff1e2aba04d5fbf63517d602e00ecf8eb28e5720be863dacf7ec6a29b405030
         + 43 LS: (2) [1840 R] /T:3DLightingScheme /S:Headlamp
            / MS: M
         □ II NA: (4)
           □ 430 0: (6) [188 0 R] /T:3DNode
               N: FDRBK21V02524A01_32(2).3D PMI.ecf8eb28e5720be863dacf7ec6a29b405030
               -4.5 O: 1.0
              # 430 RM: (2) [195 0 R] /T:3DRenderMode /S:Solid
                Type: 3DNode
                ?: V: false
            # 43 1: (6) [189 0 R] /T:3DNode
            # 43 2: (6) [190 0 R] /T:3DNode
             # 40 3: (6) [191 0 R]
                                  /T:3DNode
```

3D data is a stream within the PDF

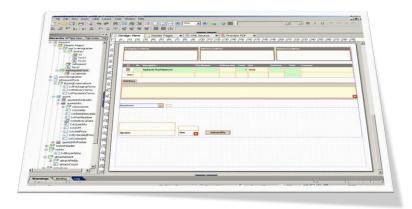
Geometry data is sequential binary; other data is XML and accessible

Tools exist to do the conversion from authoring system and placement in PDF file



Data binding

Global Product Data Interoperability Summit | 2015



Templates

Global Product Data Interoperability Summit | 2015

Predetermines layout

- Where objects are placed
- How data binding is realized
- How objects behave

Visible content

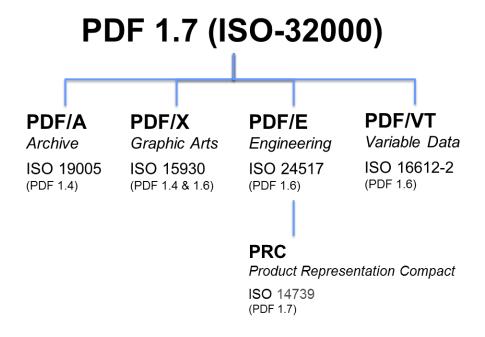
- Text
- 2D and 3D
- Form objects (editable)
- Control elements (buttons, lists)

Data content

XML data

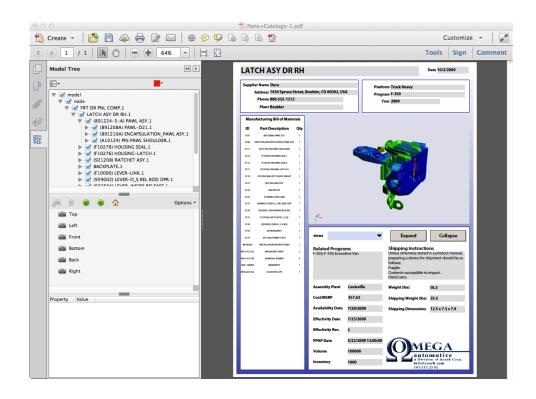
Control logic

- JavaScript
- FormCalc
- Flash apps



PDF standards

Global Product Data Interoperability Summit | 2015



What is PDF/E?

Global Product Data Interoperability Summit | 2015

The engineering document format

Why develop an engineering version of PDF?

Global Product Data Interoperability Summit | 2015

Engineering today is mostly done in 3D

Multiple proprietary CAD data formats exist

AutoCAD, CATIA, Siemens NX, PTC Creo, etc.

Tools for proprietary formats are expensive

Existing open standards for CAD data are too old (IGES) or do not have a standard viewer available (STEP, JT)

Estimated that there is up to 4 times the demand for CAD data outside the engineering department – RFI/RFQ, assembly instructions, maintenance manuals, marketing, etc.

PDF/E (ISO 24517-1:2008)

Global Product Data Interoperability Summit | 2015

Based on PDF (ISO 32000-1)

Covers 3 primary areas:

- Incorporation of complex engineering data into compact PDF (3D, object-level data, etc.)
- Accurate printing of engineering drawings
- Support for secure exchange/management of annotation and markup data

Constrained to provide predictability

- All fonts MUST be embedded
- No external resources; self contained
- 3D, Layers, Multimedia

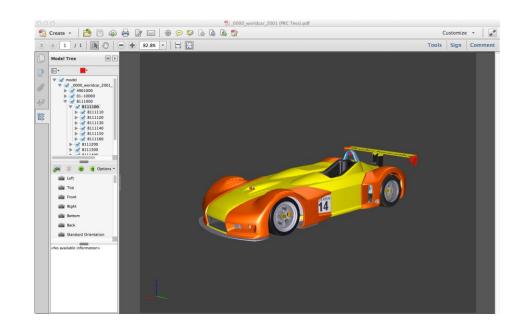
The need to archive PDF/E

Global Product Data Interoperability Summit | 2015

Long life cycle products

- Airplanes
- Ships
- Automobiles
- Buildings
- Nuclear Power Plants
- Off Short Platforms
- Etc.

Need to maintain / repair / operate these designs throughout their lifecycle

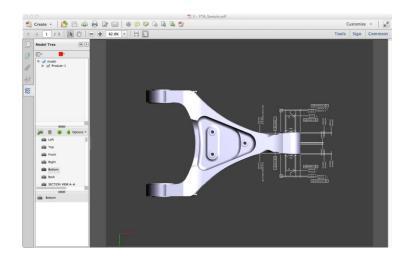


Global Product Data Interoperability Summit | 2015

Model has to maintain it's original form

Relationships between multiple objects must be preserved

Assemblies / Subassemblies / Parts

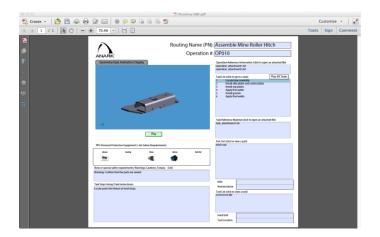

Global Product Data Interoperability Summit | 2015

Preserve attribute data that is associated to the model

- Properties materials
- Manufacturing Information
 - PMI

Preserve views of the model

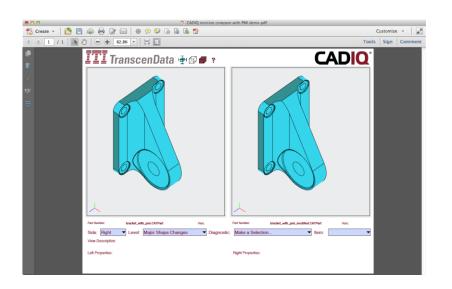
 Camera, Hide/Show, Sections, etc.



Global Product Data Interoperability Summit | 2015

Preserve relationships between the model and associated data

- Inspection data
- **Bill of Materials (BOM)**
- **Animations**
- Visual Response

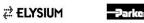

GPDIS 2015.ppt | 21

Global Product Data Interoperability Summit | 2015

Preserve validation information

Preserve Digital Rights (DRM)

Preserve associated business information (attachments)


PDF/E-2 (ISO 24517-2)

Global Product Data Interoperability Summit | 2015

The Engineering Archival Format

- Aligned with ISO 32000-2 (PDF 2.0) for engineering features
- PRC (ISO 14739-1)
 - Compact, precise engineering data
- Geospatial (GIS)
- 2D & 3D Measurements
- 3D JavaScript

Currently under development

Benefits of the PDF Platform

Global Product Data Interoperability Summit | 2015

Access

 through Acrobat Reader

Multi-type

 3D, 2D, image, text, audio, video, enterprise data

Fit for purpose

 JavaScript support, templates, forms, portfolios

Infrastructure

 existing systems and resources already support PDF

Neutrality

Investment protection

Value

 Low investment threshold with high payback

PDF/A vs PDF/E:2

Global Product Data Interoperability Summit | 2015

PDF/A

- Multiple versions (1 – 4)
- Each version less restrictive
- Developed for archivist community
- No 3D

PDF/E:2

- Developed as archival standard for engineering PDF
- Confusing name

ISO Standards

Global Product Data Interoperability Summit | 2015

PD

Portable Document Format - Engineering

ISO 24517:2 Started in 2002

Content

- 3D (precise and tessellated)
- Product Structure
- PMI

Use Cases

- MBD
- 3D Visualization
- Archiving
- Increasing usage in **Model Based Enterprise**

Jupiter Technology

ISO

Started in 1990

Content

- 3D (precise and tessellated)
- Product Structure
- PMI

Use Cases

- 3D Visualization
- DMU
- Archiving
- Increasing usage in **Engineering**

STE

Standard for the Exchange of Product data

ISO 10303

Started in 1984

Content

- 2D/3D (precise)
- Product Structure
- PMI
- Additional life cycle data

Use Cases

- CAD/PLM Data Exchange
- Various AP
- LOTAR
- High usage and wide dissemination

STEP - Strengths / Weaknesses

Global Product Data Interoperability Summit | 2015

Strengths

- LOTAR
- Designed to be the "digital thread" for engineering
 - Process automation
- Wide adoption by engineering applications

Weaknesses

- No visualization data
- Few viewers available
- File size
- No document capabilities

JT- Strengths / Weaknesses

Global Product Data Interoperability Summit | 2015

Strengths

- Siemens / Teamcenter
- Visualization
- Compressable

Weaknesses

- No adoption by some major engineering software developers
- No standardized geometry representation
- Weak document capabilities

PDF:E - Strengths / Weaknesses

Global Product Data Interoperability Summit | 2015

Strengths

- Designed to archive documents, not just data
- Forms / Templates
- Scripting
- Audio / Video
- Drawings
- Highly Compressed

Weaknesses

- Geometry not read by engineering applications
- Weak process automation capabilities

Complementary Archiving Standards

Global Product Data Interoperability Summit | 2015

Use strengths of one format to offset weaknesses of another

STEP + PDF

- PDF used as containing document
 - Visualization
 - Documentation
- STEP file attachment
 - Geometry
 - Process automation

