Data Quality Impact on Product Quality

William Schmiege

Group Vice President, Integrity

ENGINEERING YOUR SUCCESS.

September 2014

Agenda

- Parker Introduction
- Interoperability impact on Product Quality
 - Data Integrity Risks to Product Quality
 - Mitigating Data Integrity Risks
- Summary

Parker Hannifin Corporation

A worldwide, diversified manufacturer of motion and control technologies and systems

- Headquartered in Cleveland, Ohio
- 315+ facilities
- 58,000+ employees

Parker Aerospace

Global leader in flight control, hydraulic, fuel and inerting, fluid conveyance, thermal management, and engine systems and components

- \$2+ billion in annual sales
- 6,000+ employees
- Seven divisions, 43 worldwide locations

Worldwide Divisions and Facilities A Global Organization

- Aircraft Wheel & Brake Avon, Ohio Guaymas, Mexico
- Control Systems Dublin, Georgia Irvine, California Ogden, Utah
- Customer Support Operations Irvine, California - HQ
- Fluid Systems
 Elyria, Ohio
 Guaymas, Mexico
 Hauppauge, New York
 Irvine, California
 Naples, Florida
 Tolleson, Arizona
- Gas Turbine Fuel Systems Clyde, New York Devens, Massachusetts Glendale, Arizona Kuala Lumpur, Malaysia Liberty Lake, Washington Mentor, Ohio Moncks Corner, So. Carolina
- Hydraulic Systems Kalamazoo, Michigan Wiesbaden, Germany
- Stratoflex Products Apodaca, Mexico Camarillo, California Fort Worth, Texas Jacksonville, Florida Mansfield, Texas

Engineering Centers,

Everett, Washington Fort Worth, Texas Irvine, California Montreal, Canada Portsmouth, New Hampshire São José dos Campos, Brazil

Engineering Centers

Bangalore, India Nagoya, Japan Shanghai, China

Engineering Centers,

Bremen, Germany Bristol, England Derby, England Komsomolsk, Russia Moscow, Russia Toulouse, France Wiesbaden, Germany

Common, Standardized Processes and Functions

- Program management
- Engineering
- Lean
- Supply chain management
- Quality

Standard Design and Development Process

Meeting Customers' Needs through Innovation

- More electric aircraft
- Flight control systems
- Fuel cell systems
- Fuel tank inerting systems
- Hydraulic systems
- Thermal management systems

Flight Control Systems Integration Labs

Only Supplier to Offer this Canability Features

- Fly-by-wire, stick-to-surface
- Fully integrated
- First supplier in history to provide aircraft flight control integration

Benefits

- Reduces cost
- Reduces development time
- Reduces overall risk

Integrating cockpit controls, electronics, and actuation

"More Green" Aircraft

*Advisory Council for Aeronautics Research in Europe

Multi-function Fuel Cell System Replaces and Supports Multiple Functions

Fuel Tank Inerting Systems

Features

- Improved sensors
- Integration options (bleed air, cabin air, environmental control system)
- Nitrogen-enriched air distribution
- Highest permeability fibers and lightest weight solutions

Benefits

- Reduce flammability of fuel tank and other aircraft applications
- Increased safety

High Quality is the result of exquisite planning!

Quality is not an accident or a matter of "good luck"

It is rewarded to those who plan thoroughly and control accordingly

Quality Escape Reviews

- Executive review of every Quality Escape
 - Review Corrective Actions to eliminate recurrence
 - Evaluate business systems for satisfactory robustness

Examples of Errors

- Failure to take into account a drawing note
- Failure to install the correct bearings as defined parts list or BOM
- English to metric conversion
- Incorrect model and drawing configuration
- Misinterpreted leader lines for dimensions
- Misinterpreted feature when translating drawing into a manufacturing drawing
- Requirements not effectively flowed from contract to design, operations, supply chain, sub-tiers

Interfaces

- High percentage of process failures occur at the interface
 - Baton gets dropped during a process step handoff
 - Failure to flow data across an interface in the process
- Always review interface diagram when evaluating design FMEA – interfaces merit careful consideration
- Failure within a individual's task much more rare

Risks - Requirement Flow Down

- Transposing Data
 - Manual transfer of data from one document to another
 - Manual conversion of data from one set of units to another
 - Manual creation of a manufacturing drawing from the original engineering drawing
 - Reading and interpreting paper drawings and standards

Common Theme: Manually doing operations that could and should be done automatically by a computer or through system to system communication

Risks - Requirement Flow Down

- Translational Errors
 - Tools have improved still possible for STEP, IGES, 3D
 PDF file to not match native CAD model
 - Native CAD model to alternate CAD software package
 - Version compatibility within a single CAD tool
 - Regeneration of Model in a new CAD release
 - Unexpected errors when exporting from native CAD system to CAD/CAM/CMM systems
 - Not all surfaces may transfer

18

- Surface edges and faces may not join at the correct position
- Any movement from different systems/versions should be treated as suspect – must verify successful translation

Aerospace

Mitigating Requirement Flow Risks

- Electronic data exchange with suppliers
 - Ensure supplier capable of validating files provided to translated CAD/CAM/CMM software
 - Compatibility and validation essential to qualify the process or tool path program – don't trust everything will be OK
 - Exchange of STEP files for supplier processing / tool paths creation common.
 Take an FMEA thinking approach what are the opportunities to fail via failed exchanges, missed configuration checks, missed process handshakes, etc.
 - Ensure correct version at start of every job
 - Native CAD file preferred

Risks – Purchased Product Verification

- Data Integrity from extended Supply Chain
 - Accuracy of paper CoC's from suppliers
 - Inability to interrogate paper documents to the same degree as electronic exchanges of data
 - Transposition errors with manual information exchange
 - Business process for keeping the supplier up to date when a Model / design changes
 - Business process for keeping the supplier and sub-tiers current with process standards, testing procedures ...
 - Compatibility of file exchanges with supplier systems
 - Counterfeit parts

Mitigate Supplier Data Exchange Risk

- Validation of Supply Chain data flow effectiveness
 - Electronic certification, consider eliminating (at least in part) human inspection of documentation
 - Interoperability between MES, PLM, and ERP/MRP to enable automated data verification
 - Validation of internal processing and inspection results
 - Validation of supplier certification information
 - Validation of Revisions to pertinent processes, designs, and stds
 - Increases potential for "dock to stock"
 - Extended Supply Chain "perpetual inventory" knowledge
 - Knowing quantity produced and shipped to could help combat counterfeits

Risk – Design, & Design Change

- Configuration Management
 - Businesses Model is not the design source baseline
 - Businesses allow the Model and Drawing to diverge
 - Model repository on system, network drive, hard drive?
- Multiple non-linked Databases
 - Manual manipulation of data between systems
 - Manual re-entry of data
 - Manual movement of common data between deliverables
 - When no "Single Source of Truth" across the enterprise
- Manual rebuild / re-mastering during an Engineering change

Mitigating Design Data Risks

- Design and Change Control
 - Move to 3D Model as Master Model Based Enterprise
 - Eliminates model to drawing integrity risk
 - Eliminates use of drawing as master and transposing data risk
 - "Saves trees" no drawings need to be produced
 - Disciplined use of Model checking tools
 - Ensure CAD Model conformance to design standards
 - Validate intended and unintended design changes
 - Eliminates geometry errors that impede re-use of Model data in analysis and manufacturing
 - Beware of unintended consequences
 - Thoroughly evaluate potential adverse effects of a change

Mitigating Design Data Risks

- Design and Change Control
 - -3D Functional Tolerancing & Annotation (FT&A)
 - Use FT&A to define characteristics of the part in 3D environment
 - Avoids reliance on 2D drawings
 - More difficult for a designer to "fake" a dimension
 Check Tools report features that have not been dimensioned
 - -Burn down disparate design tools
 - Parker to simplify from current 400+ engineering system tools
 - Eliminate as many tool/interfaces as possible less to go wrong!
 - Virtual Trial Production?
 - Potentially qualify the model through First Article Inspection (FAI)

Checking Tool Cost Considerations

- Expenses
 - Model checking tools
 - Manpower to perform validations

Likely comes out of the CAD or Design Team budget, but everyone else is the beneficiary

- Benefits
 - Eliminates "suitability verification" by all down stream users
 - Exponential increase in waste if all downstream users do not trust the Model provided
 - Eliminates Analysts modifying the model
 - Eliminates scrap, missed deliveries, program delays

Risks - Traceability/Product Control

- Bill of Materials (BOM)
 - Non electronic flow of Parts Lists and Engineering BOM into Manufacturing BOM
 - Isolated documentation of "As-Built" BOM
 - Isolated documentation of "As-Serviced" BOM
 - Manipulation of ERP/MRP item masters and advice in Purchasing System
- Multiple potential interface errors
 - May see the use of alternate tools to pull together disparate information within the organization
 - Insufficient communication between various systems
 - Potential for data re-entry related errors

Mitigation of Traceability Risks

- Interoperability enhancement between design and manufacturing systems could eliminate several traceability and production control risks
 - Interoperability between MES, PLM, and ERP/MRP to enable automated data exchange
 - Traceability and availability of both "as Built" and "As-Serviced" BOM in Manufacturing Execution System
 - Manage and compare "as-designed", "as-planned", "asbuilt", and "as-serviced" BOM
- Eliminate manual interventions and potential errors

Risks – Human Factors

- Human influences and errors
 - Failure to maintain Model to Drawing integrity
 - Aligned or diverging?
 - Similar to double dimensioning keeping everything aligned is not always easy
 - Inclination for "paper" in many parts of the business
 - Failure to validate CAD data after Long Term Archival
 - CAD tools that are not open to 3rd party assessment tools or interoperability with other systems

Mitigating Human Factor Risks

- Succession Planning
 - Experienced employees being replaced as retire
 - A brute force manual process will not get better with less experienced employees
 - However "earlier in career" employees often quicker to embrace new tools and methods
 - Include broader systems understanding in position competency curriculum
- Improve interoperability between systems to eliminate error potential

Mitigating Human Factor Risks

- Mistake Proofing Any mechanism in the process that helps the operator avoid mistakes
 - Prevents, corrects, or draws attention as they occur
 - Eliminate manual data entry operations. Examples:
 - Part number, Revision, Serial Number, Certifications, and similar that are frequently re-entered on shipping declarations
 - High potential for data to be transposed or rearranged in error
 - Compare multiple sources to isolate an error
 - Look at three identical entries that should have the same information and highlight when a disconnect is discovered
 - Eliminate employee to look up and interpretation to accomplish their task

Summary

- "Never do what a computer can do"
 - Avoid data entry, transferring, and transposing
 - Highest risks to quality occur in these hand offs
 - Mistake proof to the maximum extent possible
- Plan for changes in the human factor environment
 - Succession planning and assurance of new team member success
- "Single Source of Truth"
 - Avoid systems that do not allow common data to be shared as opposed to requiring additional processing

Serving the World's Aerospace Leaders

Parker Aerospace

We do not make aircraft, we just make them fly!