SAVI Behavior Model Integration Virtual Integration Process

David Redman, AVSI Texas A&M University

Outline

- AVSI
- SAVI Motivation
- SAVI Program History
- SAVI Behavior Modeling
- Summary

AVSI Facilitates Cooperative Research

Global Product Data Interoperability Summit | 2015

MISSION

AVSI addresses issues that impact the aerospace community through international cooperative research and collaboration conducted by industry, government and academia.

- Contribute to standards and policies
- Establish the environment that enables collaboration and sharing of costs
- Create an aerospace industry voice

AVSI Membership Represents the Industry

Global Product Data Interoperability Summit | 2015

Full Members

- Airbus
- Boeing
- DoD
- Airbus Group
- Embraer
- GE Aviation
- Honeywell
- Rockwell Collins
- Rolls Royce
- Saab
- United Technologies

Liaison Members

- FAA
- NASA
- Aerospace Valley
- SEI

Associate Members

- ATI Wah-Chang
- BAE Systems
- Rafael D. S.
- SAES-Getters
- Foresite
- Raytheon
- HARCO Labs

Honeywell

Current membership includes a cross-section of aerospace industry stakeholders, including aircraft producers, system suppliers, regulatory bodies, government and trade organizations, and academia.

Everyone Knows the Problems...

Global Product Data Interoperability Summit | 2015

Increasing System Complexity

Mismatched Assumptions

Siloed Organizations

src: http://en.wikipedia.org/wiki/File:Gravis_UltraSound_PNP.jpg

Written Requirements

We Start Integrated, But Don't Stay Integrated

Global Product Data Interoperability Summit | 2015

BOEING is a transport of the second of the s

The Impact is Documented

The Problem Affects Everyone

Global Product Data Interoperability Summit | 2015

- Integration complexity will continue to increase
- Current solutions are insufficient
- Individual companies cannot solve it alone
- Industry cannot afford to solve it multiple times
- We can't afford not to solve it

A coordinated, industry-wide effort is needed to solve this issue.

The AVSI Systems Architecture Virtual Integration Project

Global Product Data Interoperability Summit | 2015

Full Members

Liaison Members

- Airbus
- Boeing
- DoD
- Embraer
- GE Aviation
- Honeywell
- Rockwell Collins
- United Technologies

Tool Vendor Partners

- Adventium Labs
- Esterel Technologies
- Eurostep Limited

SAVI Goals and Approach

- Reduce costs/development time through early and continuous model-based virtual integration
 - Distributed inter-domain/inter-model consistency checks throughout development - (start integrated, stay integrated)
 - Protect intellectual property (IP)
 - Capture incremental evidence for safety analysis and for certification Approach
- Capture Requirements and Use Cases that define the following:
 - SAVI Data Exchange Layer
 - SAVI Model Repository
 - SAVI Virtual Integration Process
 - SAVI distributed inter-domain/inter-model dependencies and consistency checks

One Model To Rule Them All

A Fellowship is More Practical

Global Product Data Interoperability Summit | 2015

Parametrics Behavior Requirements **Structure SysML**

Dependencies Are Key

SAVI Virtual Integration "Vee"

SAVI VIP

SAVI Roadmap for Next Stage

SAVI Behavioral Modeling – Acknowledgements

- This work is being performed by SAVI members of the **Behavior Working Group**
 - K. Woodham NASA
 - N. Shaw Eurostep (SAVI Tool Vendor Partner)
 - D. Kuehlewind, E. Scholte Sikorsky/UTAS
 - B. Hall Honeywell
 - J. Chilenski Boeing
 - R. Manners, S. Mandalapu FAA
 - B. Horta, R. Filho Embraer

Back to the Puzzle Analogy

Global Product Data Interoperability Summit | 2015

 Consider trying to complete a jigsaw puzzle using bits from 4 different puzzles in different formats taking specifics from each source to make one picture

The good news is

- We can use standards some commonality
- We can design the target jigsaw to do the job

The Behavioral Model Integration Problem - Background

- When an OEM commissions the design of a system which will be part of a new product, there are potentially many companies involved
 - The OEM creates a specification for the system
 - This is the first model, typically at a high-level
- These companies are all expert in their respective areas with established methods and tools
 - Increasingly these include the use of model-based approaches
 - Now there are many models using different approaches and at different levels of abstraction/detail
 - Some (sub-system and component) models will have been created in isolation, independent of the intended use

The Behavioral Model Integration Problem

- Need to determine if a set of models that relate to a system are consistent, when:
 - The models are possibly at different levels of abstraction/detail
 - Specifications versus simulations
 - The models are using different languages and paradigms
- Given a set of models:
 - How do we know which elements from the models should be consistent?
 - Once we know this we can check the consistency!
- What do we mean by consistent?
 - Data value consistency
 - Model property consistency
 - Model behavior consistency (time-history)
 - Model behavior consistency (property assertion)

An example to start with

Global Product Data Interoperability Summit | 2015

 SAVI have created four models of the same simple system using different languages

The Sliding Mass Example System

The SysML model

Global Product Data Interoperability Summit | 2015

The SysML model was created in Enterprise

Architect™

SysML is a Graphical Language Stored as XML using the OMG's XMI (XML **Metadata Interchange)**

The AADL Model

Global Product Data Interoperability Summit | 2015

 Architecture Analysis & Design Language (AADL) is the SAE Standard AS-5506 for modelling safety critical systems

```
package SimpleModel
...
system FullSystem
end FullSystem;

system implementation FullSystem.impl
subcomponents

ControlSys: system Platform.impl;
PhysicalSys: system Plant.impl;
UI: device ControlInput;

connections
c1: feature group ControlSys.ActuationIF <->
PhysicalSys.ActuationIF;
```

feature group ControlSys.SenselF <-> PhysicalSys.SenselF;

feature group ControlSys.UserInterface <-> UI.Interface;

AADL is stored using ASCII text There is also an XML form

A system model using AADL

c2:

end FullSystem.impl;

end SimpleModel;

The Simulink Model

Global Product Data Interoperability Summit | 2015

 Simulink is a graphical programming environment for modeling, simulating and analysing multi-domain dynamic systems.

Simulink models are stored as Ascii text There is also an XML form

The Modelica Model

Global Product Data Interoperability Summit | 2015

 Modelica® is an object-oriented, equation based language to conveniently model complex physical systems

```
model slidingblockpid1
 Modelica.Blocks.Sources.Step step1(startTime = 1, height = 1.0);
 Modelica.Blocks.Math.Add add1(k2 = -1);
 Modelica. Mechanics. Translational. Sources. Force force1:
 Modelica.Mechanics.Translational.Components.MassWithStopAndFriction boxwithfriction(
 L = 0, s(fixed = true), v(fixed = true), smax = 25, smin = -25, m = 10, F prop = 0.05,
 F_Coulomb = 0.01, F_Stribeck = 1, fexp = 10);
 Modelica. Mechanics. Translational. Sensors. Position Sensor position sensor 1;
 Modelica.Blocks.Continuous.PID PID(k = 3.3437, Ti = 64.7929, Td = 6.998, Nd = 20.04, initType =
 Modelica.Blocks.Types.InitPID.DoNotUse InitialIntegratorState);
equation
 connect(PID.y, force1.f);
 connect(add1.y, PID.u);
 connect(positionsensor1.s, add1.u2);
 connect(step1.y, add1.u1);
 connect(force1.flange, boxwithfriction.flange a);
 connect(boxwithfriction.flange b, positionsensor1.flange);
 annotation(experiment(StartTime = 0, StopTime = 6, Tolerance = 1e-006, Interval = 0.006));
end slidingblockpid1;
```

Modelica models are stored as ASCII text Depend on libraries of other Modelica models

A system specification using Modelica

The Approach

Global Product Data Interoperability Summit | 2015

 In order to compare bring all the models into a common framework - a model of models

The Model of Models

Global Product Data Interoperability Summit | 2015

Information about equivalence between things found in the models

Information about things found in the models

Information about each model

Implementation

Global Product Data Interoperability Summit | 2015

 The model of models is mapped into Eurostep's Share-A-space® collaboration hub

Implementation - Comparison

Global Product Data Interoperability Summit | 2015

 The potential equivalences are identified and the results added into Share-A-space

Implementation - Visualisation

Global Product Data Interoperability Summit | 2015

 The resulting data set (models, model content and equivalences is then visualised

Visualization aid Identifying Equivalences

Conclusions

- Using a common model-of-models approach is feasible
 - The different syntaxes of the four model types are not a barrier
 - Although some are harder than others to process
 - The approach did not need the tools that edit/execute the respective models
- A graphical approach is appropriate to present the results
- Initial approach to equivalence has identified equivalences across all four models
 - But nothing common to all four

Summary

- The AVSI SAVI project is demonstrating the use of the Virtual Integration Process, Model Repository, and Data Exchange Layer to analyze intermodel consistency
- The standards-based methodologies show promise based on proof of concept and simple system representations
- Additional work is being pursued to extend these concepts and add to the SAVI capability.

