Visualization: Past,
Present, and Future
at
The Boeing Company

Dave Kasik

Senior Technical Fellow

The Boeing Company

Christopher J Senesac

Senior Systems Architect

The Boeing Company

A Bit About Us

Global Product Data Interoperability Summit | 2014

Dave:

- Involved in computer graphics since 1969
- **Boeing Senior Technical Fellow**
- ACM Fellow
- Stand-in on starship bridges
- Known around Boeing as
 - A curmudgeon about virtual reality in the immersive, stereo sense
 - An advocate for augmented reality
 - Leading proponent and expert for broad use of visualization for geometric and non-geometric data

Chris:

- Involved in computer graphics since 1990
- Boeing Senior Architect
- Specialty being able to apply technology to real world problems
- Passion is to simplify complex problems

Outline

- Boeing's influence on visualization (Dave)
- Broadening applicability (Chris)

The Past: Boeing and Computer Graphics

- Computer graphics
- Human model
- B-spline surface rendering
- Fractals
- User interface management systems
- Industrial-strength NURBS Algorithms
- IGES
- Augmented reality
- FlyThru/IVT
- Voxmap PointShell (collision detection)
- Visual analytics
- Massive model visualization

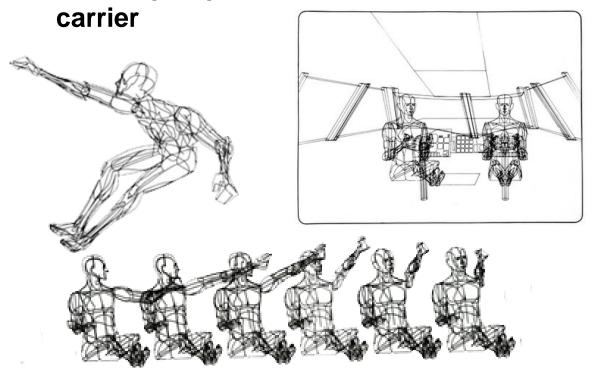
Computer Graphics

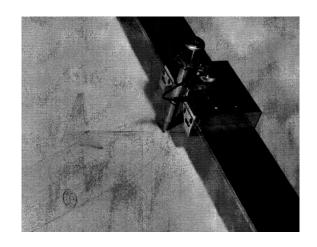
Global Product Data Interoperability Summit | 2014

According to Wikipedia, computer graphics has made computers easier to interact with, and better for understanding and interpreting many types of data. Developments in computer graphics have had a profound impact on many types of media...

The term came from Boeing-Wichita's Verne Hudson in 1960. Bill

Fetter popularized it.


Animation by photography


Human Model

Global Product Data Interoperability Summit | 2014

Fetter developed BOEMAN, the first computer model of a human body in 1964

Used a pen plotter to do reach studies for an aircraft

B-spline Surface Rendering

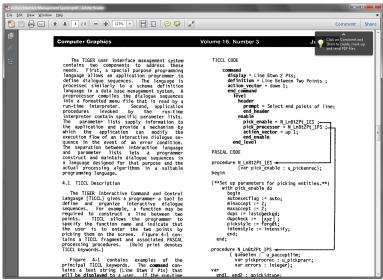
- Jeff Lane and Loren Carpenter
- Cover article of Communications of the ACM, "Scan line methods for displaying parametrically defined surfaces", 1980
- Technique still in use in all CAD and visualization tools used in Boeing
- P.S.: Jeremy Jaech developed direct NURBS surface rendering in 1981
 - Left Boeing for dream job at a start-up
 - One of two developers of Aldus PageMaker
 - Left Aldus to found Visio

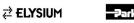
Fractal Animation

Global Product Data Interoperability Summit | 2014

- Loren Carpenter
- Produced, directed film called <u>Vol Libre</u>
- Resulted in standing ovation at SIGGRAPH'80

Courtesy: L. Carpenter

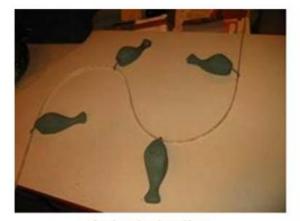

User Interface Management Systems


Global Product Data Interoperability Summit | 2014

- Started as part of the TIGER research project in 1980
- Designed by Dave Kasik and initially implemented by Loren Carpenter. Randy Houser, Hank Ramsey, and Steve Jensen handled UIMS evolution.
- The UIMS idea improved
 - The user experience with defaults, generic selection, etc.

The programmers' development of complex interactive sequences

- Originally published at SIGGRAPH'82
- Documented programmer productivity improvements (IEEE CG&A, 1988); COTS tools from Apollo and others


Industrial Strength NURBS Algorithms

Global Product Data Interoperability Summit | 2014

- Extended academic math research (Cox-deBoor) to account for lofting use of splines.
- Implemented in the TIGER research system in 1980-1981
- Spearheaded by Bob Blomgren, Eugene Lee, Dick Fuhr, et al.
- Continued and expanded by Dave Ferguson, Tom Grandine, et al.
- Grandine and Fritz Klein developed first reliable surface-surface intersector in late 1990's

Basis for CATIAV5, UG/NX, ProE. Still moving forward in Boeing as

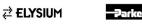

GEODUCK

A physical spline

A physical spline

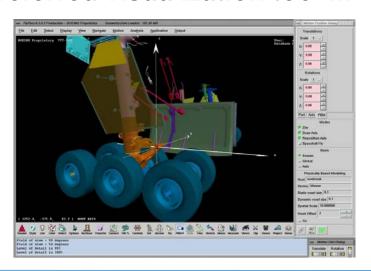
Copyright @ 2011 Boeing. All rights reserved.

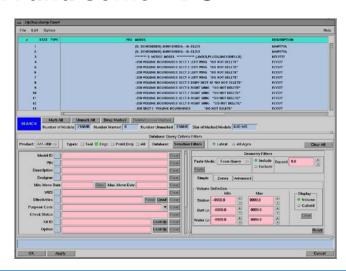
- Outgrowth of the Boeing CIIN (CAD/CAM Integrated Information Network)
 - Exchange data between Computervision (757) and Gerber IDS (767) drafting systems
 - Extended to Applicon and others
- Walt Braithwaite and Mike Liewald proposed CIIN as a national data interchange format standard in the early 1980's
- CIIN became IGES (Initial Graphics Exchange Specification)
 - Boeing added non-uniform rational b-spline curves and surfaces in the mid-to-late 1980's
- Became standard interchange format across industry.
- Pre-cursor to STEP for interchange and archive.



Augmented Reality

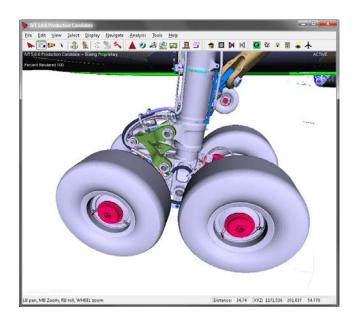
- Term coined by Boeing's Tom Caudell in 1990
- Applications evaluated (Caudell, David Mizell) in Boeing proved impractical
- Boeing continues to invest in Augmented Reality.
- Little in production use.

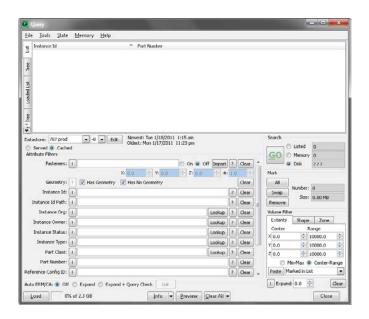




FlyThru

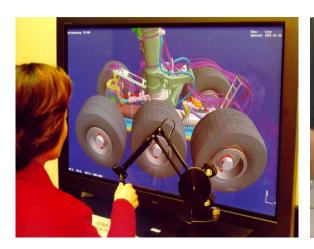
- Implemented in early 1990's to support design reviews for the 777 (Bob Abarbanel, Eric Brechner, Bill McNeely, et al.)
- Published by Abarbanel at SIGGRAPH'96
- Sucked all possible performance from SGI hardware
- Linked to geometry configuration management systems (EPIC/DIRRECT)
- **Eventually implemented on IBM RS6000s**
- Preferred visualization tool in BCA and some BDS.

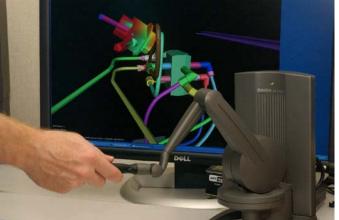




IVT

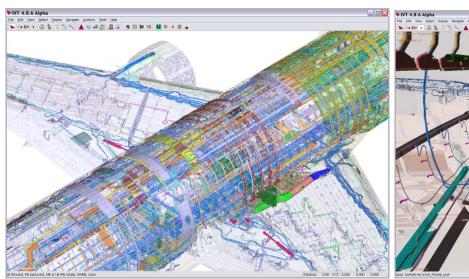
- FlyThru transitioned to IVT (Interim -> Integration Visualization Tool) and PCs for the 787 in early 2000's (John Gass, Bill McGarry, Nik Prazak, Richard Clark, et al.)
- Linked to geometry configuration management systems (EPIC/DIRRECT, Enovia)
- 20,000 registered users across BCA/BDS programs

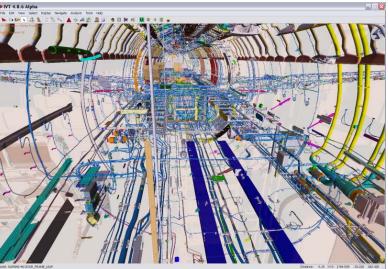




Voxmap PointShell (VPS)

- **VPS** supports real-time collision detection for haptics
- Speed is essential
 - Visualization requires at least 10Hz
 - Touch requires at least 1000 Hz
- Developed in 1997, by Bill McNeely, Jim Troy, Jeff Heisserman, Kevin Puterbaugh, Karel Zikan, et al.
- VPS met speed and accuracy requirements for Boeing maintenance removal tasks and interference checking
- Published at SIGGRAPH'99





Massive Model Visualization

- Dave Kasik started investigating ways to visualize entire aerospace products in 2004 in collaboration with organizations around the world
- Monograph 'Real-Time Massive Model Rendering' (Yoon, et al.) 2008

Observations

- Boeing has a long tradition in computer graphics and interactive techniques
- Visualization has specific value for
 - Highly complex products
 - Processing huge amounts of data
 - Widest path into brain
 - Complex system integration
 - Complex non-geometric data exploration and analysis tasks
- Boeing pushed the state-of-the-art to understand stateof-the-art products
- It takes a long time for state-of-the-art in aerospace and computing technology to become widespread

Moving Forward

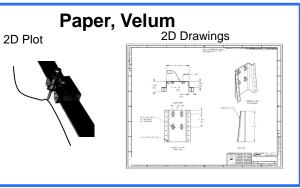
Technology	Boeing start	Evolution
Computer graphics	1960	CAD (1980's) -> entertainment (late 1990's). Now everywhere.
Man-model	1964	2 internal systems until late 1990's. Mostly COTS today
B-spline surface rendering	1980	NURBS started dominating CAD geometry in mid-to-late 1990's
Fractals & animation	1980	Fractals became commonplace in mid-1990s
User interface management systems	1981	Precursor published in 1976. Became COTS in 1980's and fizzled in mid-1990's
NURBS Algorithms	1981-1982	NURBS started dominating CAD geometry in mid-to-late 1990's
IGES	1982	Dominant interchange format until late 1990's. Gradually giving way to STEP.
Augmented Reality	1990	Lots of academic research through late 2000's. Finally becoming 'real' with mobile maps.
FlyThru/IVT	1992	CAD vendors built/acquired similar systems in the early 2000's
VoxMap PointShell	1997	Collision detection embedded in many electronic games, surgical trainers, etc. Boeing has sold a few VPS licenses.
Massive model visualization	2004	Full production in Superviewer. One COTS package (Right Hemisphere), no CAD vendors.
Visual analytics	2004	Primary use in intelligence community. Early experimental use in Boeing.

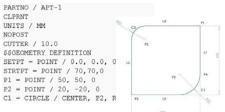
Technology Transition Duration

Technology			Вс	oeing start	Evolution		
Computer grap 20 yrs to CAD, 10 to games, 20 to commonplace entertainment (late 1990's). Now							
Man-model	45 yrs to r	easonable us	е	1964	2 internal systems until late 1990's. Mostly COTS today		
B-spline surface	20 yrs to d	commonplace		1980	NURBS started dominating CAD geometry in mid- to-late 1990's		
Fractals & anir	15 yrs to d	commonplace		1980	Fractals became commonplace in mid-1990s		
User interface	to reasonable use, little use in 2011 sor published in 1976. Became COTS in and fizzled in mid-1990's						
NURBS Algori	20 yrs to d	20 yrs to commonplace 1981-1982 NURBS started dominating CAD geom to-late 1990's				dominating CAD geometry in mid-	
IGES	5 yrs to reasonable use, some use in 2011 ant interchange format until late 1990's. ally giving way to STEP.						
Augmented Re	Re 20 yrs to some use			1990	Lots of academic research through late 2000's. Finally becoming 'real' with mobile maps.		
FlyThru/IVT	20 yrs to reasonable use 199		1992	CAD vendors built/acquired similar systems in the early 2000's			
VoxMap Point: 20 yrs to reasonable use			е	1997	Collision detection embedded in many electronic games, surgical trainers, etc. Boeing has sold a few VPS licenses.		
Massive mode	l visualizati	Still emergin	g	2004		n Superviewer. One COTS Hemisphere), no CAD vendors.	
Visual analytics Still emerging		g	2004	Primary use in intelligence community. Early experimental use in Boeing.			

Outline

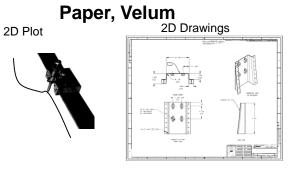
- Boeing's influence on visualization (Dave)
- Broadening applicability (Chris)

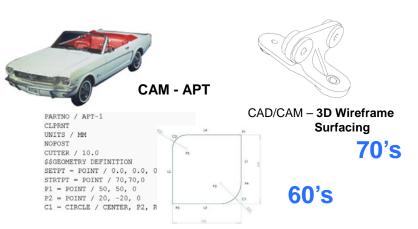




Global Product Data Interoperability Summit | 2014

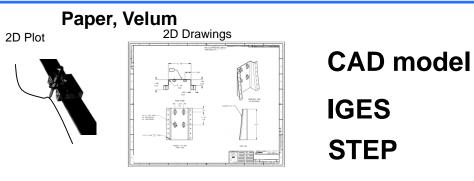
60's

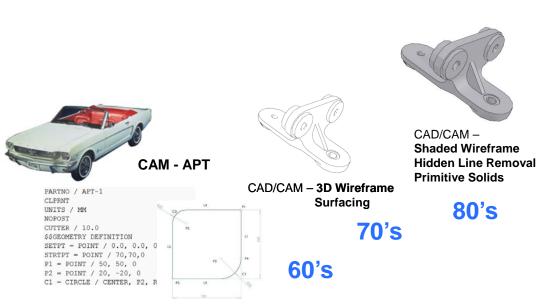




Global Product Data Interoperability Summit | 2014

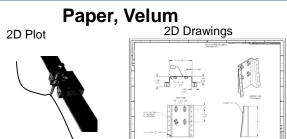
CAD model IGES

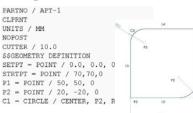




Global Product Data Interoperability Summit | 2014

eliverable's




Global Product Data Interoperability Summit | 2014

CAD model
IGES
STEP

CAD/CAM – **3D Wireframe** Surfacing

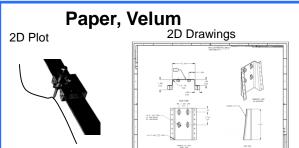
70's

60's

CAD/CAM – Shaded Wireframe Hidden Line Removal Primitive Solids

80's

80-90's



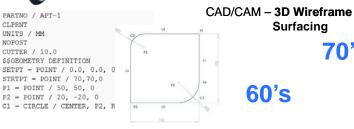
Global Product Data Interoperability Summit | 2014

eliverable's

CAD model **IGES STEP**

CAD/CAM -Solids Modeling Model Based Design (MBD)

90-00's



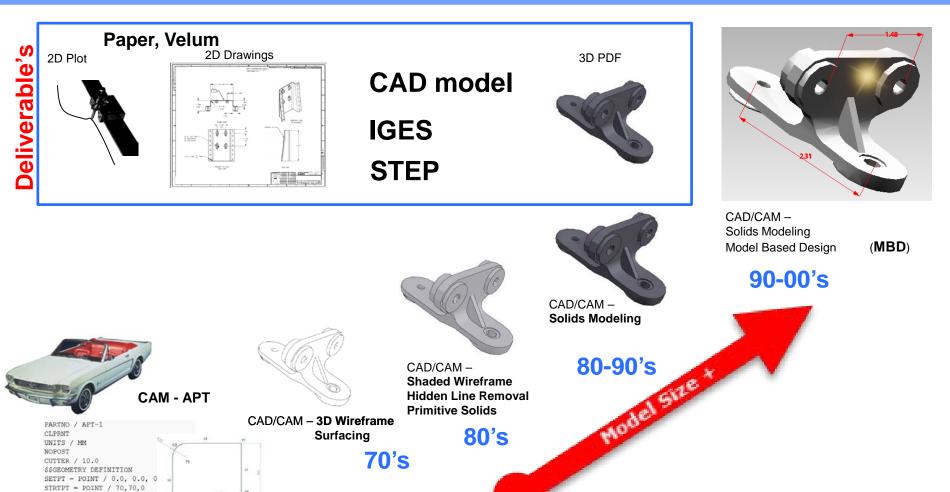
CAD/CAM -**Shaded Wireframe Hidden Line Removal Primitive Solids**

80-90's

CAD/CAM -**Solids Modeling**

70's

60's

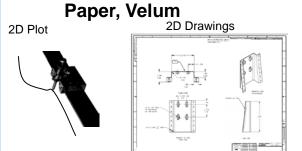

Surfacing

CAM - APT

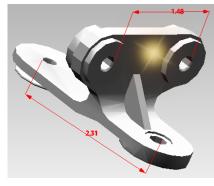
Global Product Data Interoperability Summit | 2014

P1 = POINT / 50, 50, 0

P2 = POINT / 20, -20, 0 C1 = CIRCLE / CENTER, P2, R



60's



Global Product Data Interoperability Summit | 2014

CAD model **IGES STEP**

CAD/CAM -Solids Modeling Model Based Design 90-00's

(MBD)

CLPRNT UNITS / MM NOPOST SETPT = POINT / 0.0, 0.0, 0 STRTPT = POINT / 70,70,0P1 = POINT / 50, 50, 0

P2 = POINT / 20, -20, 0C1 = CIRCLE / CENTER, P2, R

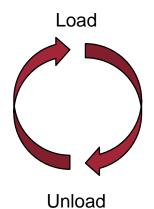
CAD/CAM - 3D Wireframe Surfacing

70's

60's

Hidden Line Removal Primitive Solids

80's

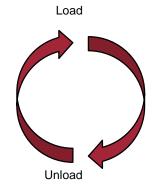


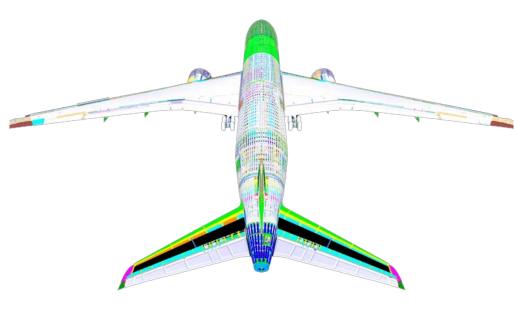
Massive Model Visualization

Global Product Data Interoperability Summit | 2014

Legacy Visualization







Massive Model Visualization



Massive Model Visualization Use Cases

- Dozens of use cases, including
 - Visualize entire BCA AC gain insight into complex relationships
 - Non-conformances Quickly identify part meta data and coordinates on AC for reporting of issues
 - Visualize installations in context
 - Provide Condition of Assembly right amount of data, right time
 - Visualize incoming out-of-sequence work
 - Visual analytics for non-geometric data Heat maps of issues
 - Serialized Controlled parts
 - As-designed to Current build comparison (Shake)
 - **Customer comparison of two AC**
 -

Demonstration

