

A View on Tool Interoperability Solutions at Ford Motor Company

Dr. Ahsan Qamar Vehicle Controls & Systems Engineering Research & Advanced Engineering Ford Motor Company aqamar2@ford.com

Contributors

- Kurt Osborne (Electrical & Electronics Systems Engineering)
- Eileen Davidson (Powertrain Engineering)
- Bill Bailey (Vehicle System Analysis)
- George Walley (Vehicle Controls & Systems Engineering)
- Chris Davey (Vehicle Controls & Systems Engineering)

Distributed Development

Old Landscape

& Maintenance

Old Landscape

Current Landscape VSEM Supported Integration

VSEM – Global Feature Dictionary

VSEM Supported Software Delivery

Interoperability Goals

Goal 1: Inform About Dependencies

Goal 2: Manage Change Across Disparate & Heterogeneous Models

Goal3: Make Decisions Based on Information from Multiple Data Sources

Goal 4: Facilitate Data Exchange About Managed Artifacts Between Different Enterprise Systems

Current State of Data Exchange Standards

- Limited to exchange of geometric and configuration data
 - STEP AP203 (Mechanical), AP 209 (Structural), AP 210 (Electro-Mechanical), AP 239 (PLCS), JT visualization
 - STEP AP 233 systems engineering –> slow uptake
- Product data exchanged in native file formats, informal communication or document-based
- Standards mostly focus on how to move data from one place to the other
- Not (always) necessary to migrate data
 - OSLC web of engineering data -> lightweight

Interoperability With Suppliers

Powertrain Controls

- Most of the code done in-house
 - A mix of model-based code generation and hand code
- Gas powertrain
 - Driver software (which is hardware dependent) is supplier-developed
 - Interface specifications provided to the supplier (document-based)
- Diesel powertrain

Research and

Advanced Engineering

- Supplier-built software (COTS)
- Mostly model-based, but also hand code
- Gasoline Models are not shared with suppliers, but Diesel's are
- Migrating towards AUTOSAR in the near future

Advantages with AUTOSAR

- Integration of new features on existing ECU's
- Tier-1 application software and OEM owned SW will co-exit on an ECU
- Transferring SW components between ECUs, supporting flexible architectures
- A HW independent RTE, based on SW components, with standardized data exchange

Electrical & Electronic Systems Engineering (EESE)

- Climate Control
 - Model-based design -> can leverage AUTOSAR components
- Infotainment
 - UML/SysML modeling is employed with Rational Rhapsody
 - UML model shared with the supplier -> code generated from UML to C
- Supplier is provided both models and documents providing interface specifications

Tool Integration / Interoperability Examples

Comparison of Integration Approaches

Example 1: Failure Mode Avoidance (FMA)

- FMA work is time consuming with specifications duplicated to FMA tools
- FMA tools disconnected from core design tools
- Mandatory FMA Rubric is needed
- Interoperability with FMA tools
 - Automatic import, export, and document generation

Solution

Contributors: Walley, G., Meinhart, M., Corral, M., Nefcy, B., Davison, M., Stanek, J.

Interoperability Supported Through SysML

VSEM - Teamcenter

Example 2: Integrated Vehicle Analysis

- Vehicle Model composed of various HW and Controller domain models
 - Modelica for HW models
 - Simulink for controller models

Integrated Vehicle Analysis - Process

Advanced Engineering

Example 3 : Hybrid Approach - Models as Graphs

Research and Advanced Engineering

Herzig, S., Qamar, A., Paredis, C., Inconsistency Management in MBSE, GPDIS 2014

Mediation Between Multiple Vocabularies

Research and Advanced Engineering

Herzig, S., Qamar, A., Paredis, C., Inconsistency Management in MBSE, GPDIS 2014

Key Takeaways

- Data exchange standards have limited uptake
- Moving data Vs creating information traces
- Tool interoperability supporting product lifecycle and system engineering work is vital
- Reasoning over distributed sources with traceability
- Scalability of point-to-point vs single shared meta-model vs hybrid integration approaches

