Simulation Support

for Innovative

Product-Process

Development

Leon McGinnis, Georgia Tech George Thiers, Georgia Tech

Collaborative Work

- Boeing + Georgia Tech: Strategic University Partnership
- Design-To-Production Transition Project
 - Michael Christian, Engineering Technical Fellow, Principle Investigator, The Boeing Company
 - Prof. Leon McGinnis, GT faculty, project director
 - George Thiers, GT PhD Student, now graduated
 - Tim Sprock, PhD Student
- Pilot project
 - Major aircraft manufacturer, new program development
 - Dr. George Thiers, GT Post-doc
- MBSE Tools, Inc: Commercialization of research ideas
 - Dr. George Thiers, founder

Context & Vision—What Is D2P?

Global Product Data Interoperability Summit | 2015

Concept to Detail

Intent: Make D2P decision-making better, faster, cheaper, more reliable

Goal: Capture D2P knowledge in models to:

- 1) Provide seamless access to analysis me
- 2) Facilitate integrated ergonomics & safety analysis
- 3) Facilitate model inconsistency detection

Concept to Detail

Today

www.nationaldefensemagazine.org

Agenda for Today

- The Challenge
 - Supporting the "integrated process development" in IPPD for advanced technologies, like composites
 - Focus on understanding the cost/performance trade-offs as product definition and market projections change
- The Concept
 - Capture simulation knowledge and automate simulation modeling process
- The Implementation
 - SysML, Simio, Bridging abstraction
- The Pilot Study
 - Source information
 - Simulation results
- Where to Next?

Goal of IPPD

Global Product Data Interoperability Summit | 2015

Source: www.automatedbuildings.com

Reality of IPPD

Global Product Data Interoperability Summit | 2015

"Integrated" => Sequential, with feedback

Goal is frequent, fast feedback...3F

Our Specific Challenge

- Predicting the (rate/cost) behavior of a (new!) complex process design
- Time and expense of (hand-building) discrete event simulation models => not fast, not frequent feedback
- But, we know how to build the models, it's just managing the details of each specific design that takes time (and therefore \$)
- Can we give simulation capability to the process designer, much as FEA is available to the part designer, i.e., "on demand, instantaneous"?

As-Is Process Simulation Process

As-Is Process Simulation Process

So, What Is The Problem?

Global Product Data Interoperability Summit | 2015

I've got a PhD in materials, but I can't communicate with my simulation engineer.

- Simulation Engineers speak a different language than Process and Production Engineers!
- Lots of time and effort goes into "translating" from one domain to another.

Useful analogy: Suppose the part designer had to explain the part to an "FEA Simulation Engineer" in order to get a stress or thermal analysis done; how often would FEA be used? Automating the meshing, the generation of the analysis, and the presentation of analytic results has transformed part design.

So, What Is The Problem?

- Today, we can only afford to close the loop between **Production and Process** Engineering infrequently
- We would like to be able to close the loop with Design and with Marketing
- We need to be able to do the Simulation Engineering "on the fly", very inexpensively
- **WE NEED AUTOMATION!**

Conceptual Approach

- Organizing themes
- Reference model
- Specific kinds of questions
- Simulation components
- Bridging abstraction
- Model-to-model transformation

1. Organizing Themes

- Product (D): what is produced, part specs, MBOMs, etc
- Process (P): how it's produced
- Resource (R): what is used in a process
- Facility: organization of resources and processes
- Production level (L): the rate of production

2. Reference Model

Global Product Data Interoperability Summit | 2015

Object oriented Graphical Formal semantics and syntax "Universal"

Abstraction Process

Process Engineering Domain Expert Knowledge Production Engineering Domain Expert Knowledge

3. Specific kinds of questions

Global Product Data Interoperability Summit | 2015

- What capacity of R is needed, with design D, process P, and production level L?
- How much WIP will be needed to support L, with R, D, and P?
- What will be cycle time with L, R, D, and P?
- What will be the utilization of R?
- What will be the bottleneck process?

•

By knowing the kinds of questions

- We know what kinds of facts are needed in order to answer the questions
- We can develop configurable, parameterized "simulation components" that can be assembled to answer the questions
- Given instance data for D, P, R, and L, we can automate the assembly of simulation components to answer a specific question

4. Simulation Components

Global Product Data Interoperability Summit | 2015

Reference Model

- · How much WIP will be needed to support L, with R, D, and P?
- · What will be cycle time with L, R, D, and P?
- · What will be the utilization of R?
- · What will be the bottleneck process?

Simulation Component Library

5. Bridging Abstraction

Global Product Data Interoperability Summit | 2015

Reference Model

Bridging Abstraction

Mapping

Simulation Component Library

6. Model-to-Model Transformation

Implementation

- Reference Model: SysML/UML, Ecore
- Bridging Abstraction: SysML/UML
- Simulation: Simio, Tecnomatix Plant Simulation, SimEvents
- Mappings: Underlying representation is XML
- M2M transform: C#
- Data: Excel/Access (tabular view) or Visio (diagram view)

Pilot Study: Composite Part Manufacturing

- Serial process: multi-stage layup, autoclave, cleanup
- Parts flow and fixtures flow
- Parts design changes
- Production level changes
- Determine resource costs, WIP, leadtime
- Data from Process Engineering in spreadsheets
- Simio simulations

Pilot Study Process

- Understand source data
- Develop Simio component library
- Develop generic mappings, M2M transform
- Demonstrate automation using "typical" data

Input #1: Reference Model

```
in ☐ Job

... □ time-mean : EDouble

±
··· □ time-stdev : EDouble

±
··· □ time-units : EString

  🕀 🖳 requiredRawMaterialTypes : EMap<RawMaterialType, EInt>
  🕀 🖳 requiredMobileResourceTypes : EMap<MobileResourceType, EInt>
  □ ☐ Operation -> Job
    (全) Job

⊕ □ parentJob : Job
 □··· ■ RawMaterialType
  🗄 🖳 Ţ quantityOnHand : EInt
  ·· PartType
  🛨 🕝 quantityOnHand : EInt

⋮ □ supplyBatchSize : EInt

 MobileResourceType
  🛨 🖵 guantityOnHand : EInt
```

- A reference model (a.k.a. system model or domain-specific language, which is closely related to an ontology) defines a schema for describing a system, scenarios within it, and alternatives to it.
- Reference modeling languages include entityrelationship diagrams, the IDEF family, UML, SysML, Ecore, OPM, and more.
- If the modeling language is object-oriented, then a reference model only defines schema.
 An analogy is that a reference model defines an Excel workbook's sheets and column headers, but not any data.

Input #2: System Description conforming to Reference Model

Global Product Data Interoperability Summit | 2015

± ¬ ¬ quantityOnHand: EInt

InstanceID quantityOnHand
LayupMoldType1 10
LayupMoldType2 12
ToolType1 8
ToolType2 8
OperatorL11 2
OperatorL12 2
OperatorL13 1
OperatorL14 1

- The reference model defines a language; now use it to capture concrete descriptions of systems, scenarios, and alternatives.
- Languages for capturing conforming system descriptions include tabular environments (Excel) and diagram environments (Visio).
- A reference model and conforming system description together comprise a complete "system model".

RawMaterialType

InstanceID quantityOnHand interSupplyTime-mean interSupplyTime-stdev interSupplyTime-units supplyBatchSize
LargePlySheet 20 1 0.1 hours 12

RawMaterialType

⊕ interSupplyTime-stdev : EDouble
 ⊕ interSupplyTime-units : EString
 ⊕ upplyBatchSize : EInt

Input #3: Ask a Question

- A system model is not enough; analysis is performed to answer a question.
- Any question? No, only questions which analysts know how to answer, and for which they
 have captured the formulation process for an answering analysis model in a reusable way.
- The question driving this pilot project (stated informally) is "What is the minimum number of resources needed to support a given production rate?"

Output #1: An Analysis Model

Output #2: An Answer to the Question

Global Product Data Interoperability Summit | 2015

A discrete-event simulation model includes both a model and an experiment. Both are auto-formulated, yielding an answer:

Typical Results

- Handbuilt simulation: xx person-days, xx days leadtime
- Auto-generated simulation: "instantaneous"
- Development effort to date: 5-6 person weeks...
- Effort to include additional processes: minimal
- Effort to adapt to different simulation language: it depends

Next Steps

Global Product Data Interoperability Summit | 2015

- Commercialization of technology
 - As a service: develop specific implementations for large, persistent programs where demand for process simulation is large
 - As a product: generalize reference model, mappings, simulation libraries, and M2M transformation for larger domains (e.g., all of composites manufacturing, composites assembly, all of sheet metal fabrication, traditional aircraft assembly)

Contacts:

- Dr. George Thiers, MBSE Tools Inc, george.thiers@mbsetools.com
- Dr. Leon McGinnis, Georgia Tech, Ieon.mcginnis@gatech.edu

