
Standards-Based
Interoperability for
Design to
Manufacturing and
Quality in the
Supply Chain

Asa Trainer GPDIS2016 Phoenix, AZ Sep 2016



## Introduction

Global Product Data Interoperability Summit | 2016

#### International TechneGroup Incorporated (ITI)

- Private company headquartered in Cincinnati since 1983
- Development offices in the United States, England, Israel and India
- Engineering software and services
  - PLM system migration solutions
  - CAD interoperability solutions



#### Asa Trainer

- New England upbringing, military veteran
- Engineering education (UMD, WSU, RPI) and university educator/researcher
- Both aerospace and CAD industry experience
- Interoperability solutions development
- US and foreign patents in interoperability
- International consortia team member
- Interoperability product / process / program management





# Acknowledgements

- The work described here is funded by
  - NIST Grant (CA) 70NANB14H314
    - Investigating the Impact of **Standards-Based Interoperability** for Design to Manufacturing and **Quality in the Supply Chain**
  - NIST Grant (CA) 70NANB14H256
    - Validation for Downstream Computer Aided Manufacturing and Coordinate Metrology **Processes**
  - DMDII-14-06-05
    - Digital Standards for the **Advanced Manufacturing Enterprise "Operate, Orchestrate** and Originate (O3)"















## The Team



























### **Building Blocks to a Stds-based MBE Process**

Global Product Data Interoperability Summit | 2016

# NIST Sponsored



Can we close upstream info gaps needed for downstream processes? Can we move downstream MBD back upstream as feedback via a Std?

Can we validate downstream MBD data against its upstream source? Can we map the upstream MBD Std to the downstream MBD Std?

Can we move MBD data to downstream processes (CAM/CAI) via a Std? Is there a demonstrable ROI in taking the MBD downstream?

Can we extend the Test Cases to include more "real-world" elements? If we do, what impact will it have on the results?

Can we define meaningful MBD Test Cases and Model them in CAD? Can we Verify that the models accurately represent the test cases? Can we create MBD Std-based Derivatives and Validate them?

Can we Validate STEP files for proper STEP syntax?

Can we coax better STEP file translators out of CAD OEMs & vendors?









#### **Building Blocks to a Stds-based MBE Process**

Global Product Data Interoperability Summit | 2016

## DMDII O3 Commercially-sponsored ega res **OSD TDGV Proto** CAx-IF 3DPDF-IF JT-IF other **End-user Companies** CAx & Interop.

Can we provide near real-time design change to the downstream users? Can we provide rapid feedback to designers & planners during simulation or execution?

Is there a better way to control geometric quality than global tolerances?

Can tolerance data in PMI be used to control variation in nominal geometry?

Can the NIST benchmark data and verification/validation processes be used to drive improvement in commercial MBD (interoperability) processes?

Can the NIST benchmark data be used to drive improvement In commercial MBD (interoperability) processes?

Can end-user companies leverage the NIST benchmark data and verification/validation processes?

Can CAx and Interoperability vendors leverage the NIST benchmark data and verification/validation processes?





Vendors

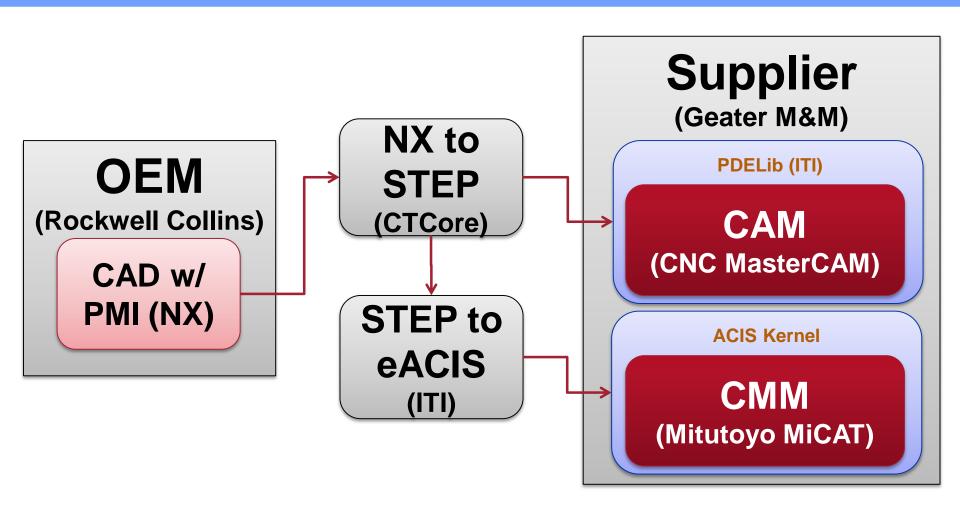




# Design to Manufacturing







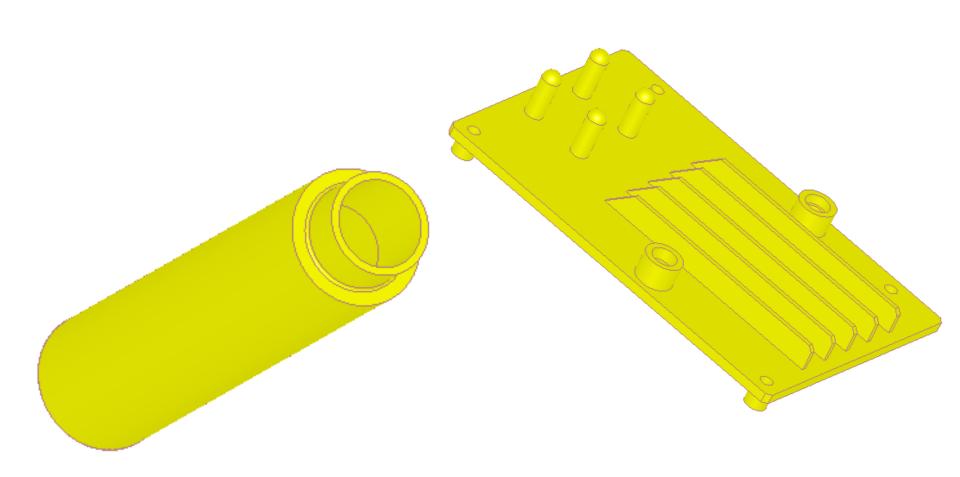







# Data Exchange from CAD-to-CAM and CAD-to-CMM












# **Test Models**













## **CAD Model Creation Metrics**

| CAD Metrics                                             | Rolle                                   | Rolled Standoff                             |                                        |                                         | Heat Sink                                     |                                        |  |  |
|---------------------------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------|--|--|
| 827-9999                                                | -903                                    | -905                                        | -907                                   | -904                                    | -906                                          | -908                                   |  |  |
| 2D PDF drawing                                          |                                         | full dimension<br>with 2D PMI<br>annotation | key 2D PMI<br>annotation<br>only (PDD) |                                         | full dimension<br>with 2D PMI<br>annotation   | key 2D PMI<br>annotation<br>only (PDD) |  |  |
| 3D model                                                | includes<br>embedded<br>PMI             | not provided                                | with no<br>embedded<br>PMI             | includes<br>embedded<br>PMI             | not provided                                  | with no<br>embedded<br>PMI             |  |  |
| Number of PMI entities                                  | 23 (24*)                                |                                             |                                        | 78 (90*)                                |                                               |                                        |  |  |
| CAD model creation (modified existing part)             | 0.5 hours                               | 0.5 hours                                   | 0.5 hours                              | 0.5 hours                               | 0.5 hours                                     | 0.5 hours                              |  |  |
| Model-embedded PMI                                      | 3.0 hours                               |                                             |                                        | 6.0 hours                               |                                               |                                        |  |  |
| 2D PDF drawing creation                                 | 0.5 hours                               | 1.0 hours                                   | 0.7 hours                              | 0.5 hours                               | 2.4 hours                                     | 1.3 hours                              |  |  |
| CAD tool issue resolution<br>and designer education     | 9.0 hours                               | 0.5 hours                                   | 0.1 hours                              | 4.9 hours                               | 0.5 hours                                     | 0.1 hours                              |  |  |
| CAD model resolution<br>to address downstream<br>issues | 2.3 hours<br>+ 4.5 hours<br>to learn NX |                                             |                                        | 3.0 hours<br>+ 1.3 hours<br>to learn NX | original dwg<br>missing dim –<br>required ECO |                                        |  |  |

<sup>\*</sup> Original PMI entity count based on objects found in the NX Part navigator - eventually reduced count by issue resolution











## **CAM Model Creation Metrics**

| CAM Metrics                                                                                 | Rolled Standoff |                 |                | Heat Sink     |                 |                |
|---------------------------------------------------------------------------------------------|-----------------|-----------------|----------------|---------------|-----------------|----------------|
| 827-9999                                                                                    | -903            | -905            | -907           | -904          | -906            | -908           |
|                                                                                             | 3D model with   | 2D drawing      | 2D PMI drawing | 3D model with | 2D drawing      | 2D PMI drawing |
|                                                                                             | embedded PMI    | fully annotated | and 3D model   | embedded PMI  | fully annotated | and 3D model   |
| CAM Process Preparation  a) Gather information  b) Analyze job  c) Determine approach       | 3.25 hours      | 3.25 hours      | 3.25 hours     | 3.83 hours    | 3.83 hours      | 3.83 hours     |
|                                                                                             | a) 0.25 hours   | a) 0.25 hours   | a) 0.25 hours  | a) 0.33 hours | a) 0.33 hours   | a) 0.33 hours  |
|                                                                                             | b) 0.50 hours   | b) 0.50 hours   | b) 0.50 hours  | b) 0.50 hours | b) 0.50 hours   | b) 0.50 hours  |
|                                                                                             | c) 2.50 hours   | c) 2.50 hours   | c) 2.50 hours  | c) 3.00 hours | c) 3.00 hours   | c) 3.00 hours  |
| CAM Setup a) Model preparation b) Pre-program setup                                         | 0.45 hours      | 0.52 hours      | 0.45 hours     | 0.68 hours    | 0.64 hours      | 0.40 Hours     |
|                                                                                             | a) 0.00 hours   | a) 0.07 hours   | a) 0.00 hours  | a) 0.45 hours | a) 0.52 hours   | a) 0.28 hours  |
|                                                                                             | b) 0.45 hours   | b) 0.45 hours   | b) 0.45 hours  | b) 0.23 hours | b) 0.12 hours   | b) 0.12 hours  |
| CAM Programming a) Part programming b) Tooling preparation                                  | 1.00 hours      | 1.00 hours      | 1.00 hour      | 3.23 hours    | 3.13 hours      | 2.30 hours     |
|                                                                                             | a) 0.50 hours   | a) 0.50 hours   | a) 0.50 hours  | a) 3.01 hours | a) 2.75 hours   | a) 2.08 hours  |
|                                                                                             | b) 0.50 hours   | b) 0.50 hours   | b) 0.50 hours  | b) 0.22 hours | b) 0.38 hours   | b) 0.22 hours  |
| CAM Verification a) Create work instructions (setup sheets) b) Review process (Run VERICUT) | 0.15 hours      | 0.15 hours      | 0.15 hours     | 0.42 hours    | 0.50 hours      | 0.53 hours     |
|                                                                                             | a) 0.10 hours   | a) 0.10 hours   | a) 0.10 hours  | a) 0.32 hours | a) 0.35 hours   | a) 0.35 hours  |
|                                                                                             | b) 0.05 hours   | b) 0.05 hours   | b) 0.05 hours  | b) 0.10 hours | b) 0.15 hours   | b) 0.18 hours  |
| Total                                                                                       | 4.85 hours      | 4.92 hours      | 4.85 hours     | 8.16 hours    | 8.10 hours      | 7.06 hours     |











## **CMM Model Creation Metrics**

| CMM Metrics                                                           | Rolle                                        | Rolled Standoff                              |                                              |                                              | Heat Sink                                    |                                              |  |
|-----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| 827-9999                                                              | -903<br>3D model with<br>embedded PMI        | -905<br>2D drawing<br>fully annotated        | -907<br>2D PMI<br>drawing and 3D<br>model    | -904<br>3D model with<br>embedded PMI        | -906<br>2D drawing<br>fully annotated        | -908<br>2D PMI<br>drawing and 3D<br>model    |  |
| CMM Process<br>Preparation                                            |                                              |                                              |                                              | 0.10 hours                                   | 0.50 hours                                   | 0.75 hours                                   |  |
| CMM Setup                                                             |                                              |                                              |                                              | 0.10 hours                                   | 0.75 hours                                   | 1.00 hour                                    |  |
| CMM Programming                                                       |                                              |                                              |                                              | 0.50 hours                                   | 4.76 hours                                   | 4.75 hours                                   |  |
| CMM Verification<br>a) Verify information<br>b) Verify for collisions |                                              |                                              |                                              | 0.30 hours<br>a) 0.15 hours<br>b) 0.15 hours | 1.00 hours<br>a) 0.50 hours<br>b) 0.50 hours | 1.00 hour<br>a) 0.50 hours<br>b) 0.50 hours  |  |
| Inspection a) CMM inspection b) Manual inspection                     | 0.50 hours<br>a) 0.00 hours<br>b) 0.50 hours | 0.25 hours<br>a) 0.00 hours<br>b) 0.25 hours | 0.25 hours<br>a) 0.00 hours<br>b) 0.25 hours | 0.70 hours<br>a) 0.20 hours<br>b) 0.50 hours | 0.40 hours<br>a) 0.20 hours<br>b) 0.20 hours | 0.40 hours<br>a) 0.20 hours<br>b) 0.20 hours |  |
| CMM Data Analysis                                                     |                                              |                                              |                                              | 0.50 Hours                                   | 0.50 hours                                   | 0.50 hours                                   |  |
| Total Time                                                            | 0.50 hours                                   | 0.25 hours                                   | 0.25 hours                                   | 2.20 hours                                   | 7.91 hours                                   | 8.40 hours                                   |  |







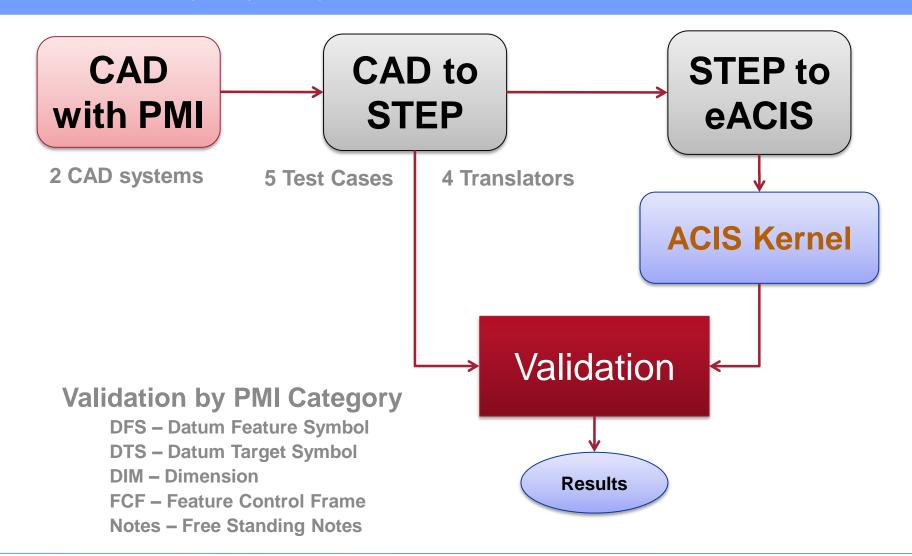




# Design to Metrology Validation














# Data Exchange from CAD-to-CMM (STEP to eACIS) with Validation











# **D2MIV Phase 1 Results – RC Models**

Global Product Data Interoperability Summit | 2016

| Model File   | DFS    | DIM      | FCF      | Clean   |
|--------------|--------|----------|----------|---------|
|              | Clean  | Clean    | Clean    | Percent |
| 827-9999-903 | 2 of 2 | 3 of 8   | 6 of 6   | 69%     |
| 827-9999-904 | 3 of 3 | 53 of 54 | 13 of 13 | 99%     |

DFS = Datum Feature Symbol

DIM = Dimension

FCF = Feature Control Frame











# **D2MIV Phase 1 Results – NIST CTCs**

Global Product Data Interoperability Summit | 2016

#### eACIS Targets Validated w.r.t. STEP AP242 Sources

| Model File                                 | DFS   | DIM   | FCF   | Percent     | Percent        |
|--------------------------------------------|-------|-------|-------|-------------|----------------|
|                                            | Clean | Clean | Clean | Clean       | Clean          |
| nist ctc 01 asme1 ct5210 rd ct242repr.stp  | 2     | 7     | 6     | (xN)<br>79% | (xNDTS)<br>79% |
| nist_ctc_01_asme1_ct5210_rd_dk242repr.stp  | 3     | 6     | 6     | 79%         | 79%            |
| nist_ctc_01_asme1_nx800_rd_ct242repr.stp   | 3     | 7     | 6     | 84%         | 84%            |
| nist_ctc_01_asme1_nx800_rd_nx.stp          | 3     | 1     | 6     | 53%         | 53%            |
| nist ctc 01 asme1 nx800 rd th.stp          | 3     | 9     | 6     | 95%         | 95%            |
| nist_ctc_01_asme1_ct5210_rc_ct242repr.stp  | 0     | 0     | 0     | 0%          | 0%             |
| nist ctc 02 asme1 ct5210 rc dk242repr.stp  | 0     | 0     | 0     | 0%          | 0%             |
| nist_ctc_02_asme1_cts210_rc_dtx242repr.stp | 0     | 0     | 0     | 0%          | 0%             |
|                                            |       |       |       |             |                |
| nist_ctc_02_asme1_nx800_rc_nx.stp          | 6     | 7     | 22    | 80%         | 100%           |
| nist_ctc_02_asme1_nx800_rc_th.stp          | 0     | 0     | 0     | 0%          | 0%             |
| nist_ctc_03_asme1_ct5210_rc_ct242repr.stp  | 6     | 8     | 13    | 93%         | 93%            |
| nist_ctc_03_asme1_ct5210_rc_dk242repr.stp  | 6     | 8     | 13    | 93%         | 93%            |
| nist_ctc_03_asme1_nx800_rc_ct242repr.stp   | 6     | 8     | 13    | 93%         | 93%            |
| nist_ctc_03_asme1_nx800_rc_nx.stp          | 6     | 8     | 13    | 93%         | 93%            |
| nist_ctc_03_asme1_nx800_rc_th.stp          | 6     | 9     | 13    | 97%         | 97%            |
| nist_ctc_04_asme1_ct5210_rd_ct242repr.stp  | 8     | 7     | 5     | 87%         | 87%            |
| nist_ctc_04_asme1_ct5210_rd_dk242repr.stp  | 8     | 9     | 3     | 83%         | 83%            |
| nist_ctc_04_asme1_nx800_rd_ct242repr.stp   | 8     | 7     | 4     | 83%         | 83%            |
| nist_ctc_04_asme1_nx800_rd_nx.stp          | 8     | 5     | 5     | 78%         | 78%            |
| nist_ctc_04_asme1_nx800_rd_th.stp          | 8     | 7     | 5     | 87%         | 87%            |
| nist_ctc_05_asme1_ct5210_rd_ct242repr.stp  | 4     | 2     | 6     | 55%         | 60%            |
| nist_ctc_05_asme1_ct5210_rd_dk242repr.stp  | 4     | 3     | 7     | 64%         | 70%            |
| nist_ctc_05_asme1_nx800_rd_ct242repr.stp   | 2     | 2     | 5     | 45%         | 50%            |
| nist_ctc_05_asme1_nx800_rd_nx.stp          | 2     | 2     | 10    | 70%         | 78%            |
| nist_ctc_05_asme1_nx800_rd_th.stp          | 2     | 2     | 6     | 45%         | 50%            |
| Counts:                                    | 107   | 178   | 186   | 62%         | 67%            |
| Percents:                                  | 72%   | 64%   | 62%   |             |                |
|                                            |       |       |       |             |                |

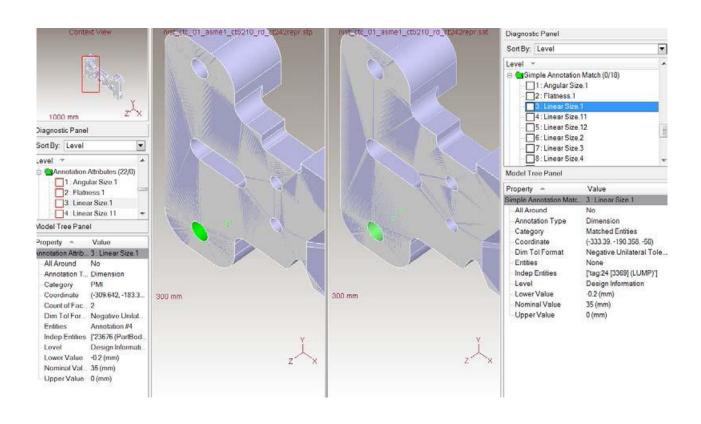
DFS = Datum Feature Symbol DIM = Dimension

FCF = Feature Control Frame

xN = Percent Clean excluding Note entities

xNDTS = Percent Clean excluding Note and Datum Target Symbols





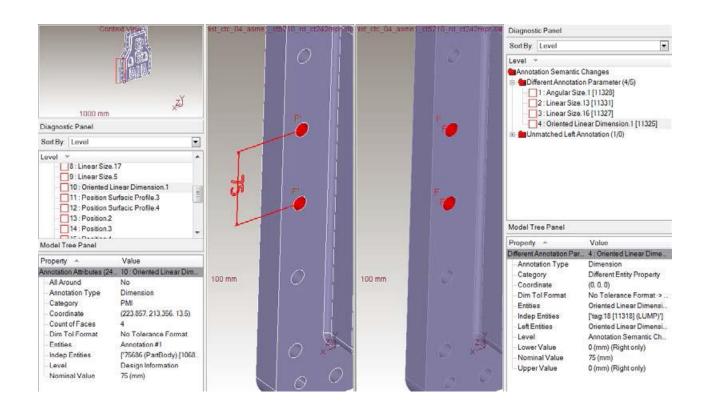







# Validation of extended-ACIS PMI representation with Source STEP Model





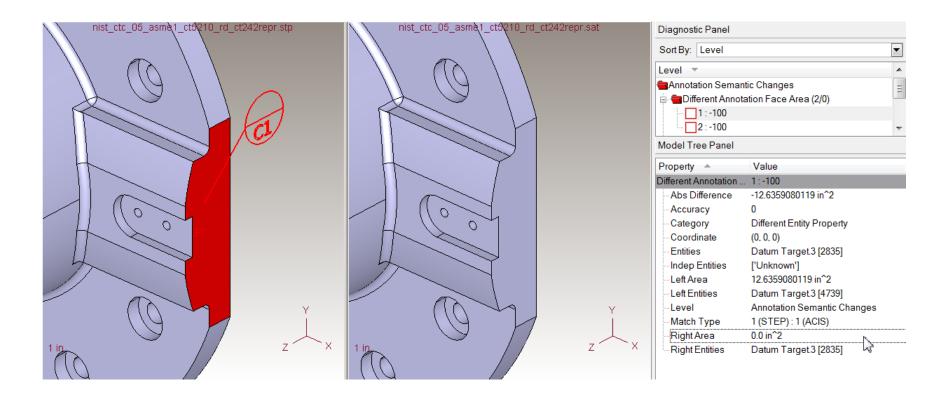







# Validation of extended-ACIS PMI representation with source STEP Model illustrating an anomaly







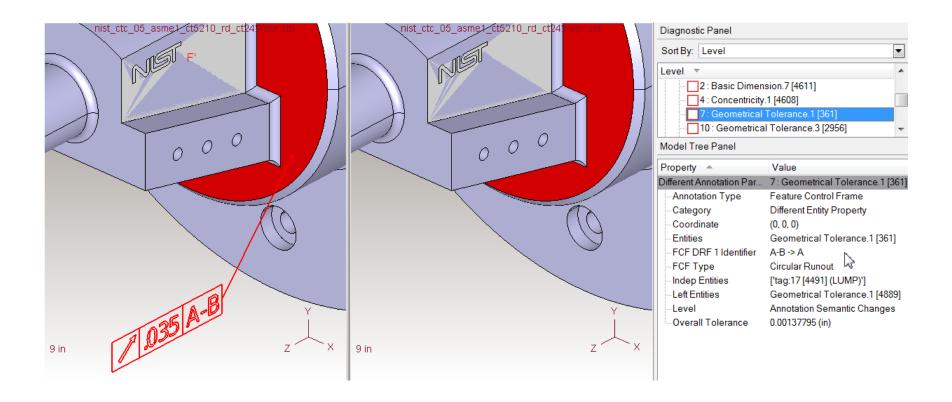





# Validation illustrating loss of Associated Geometry for a Datum Target Symbol in target ACIS model







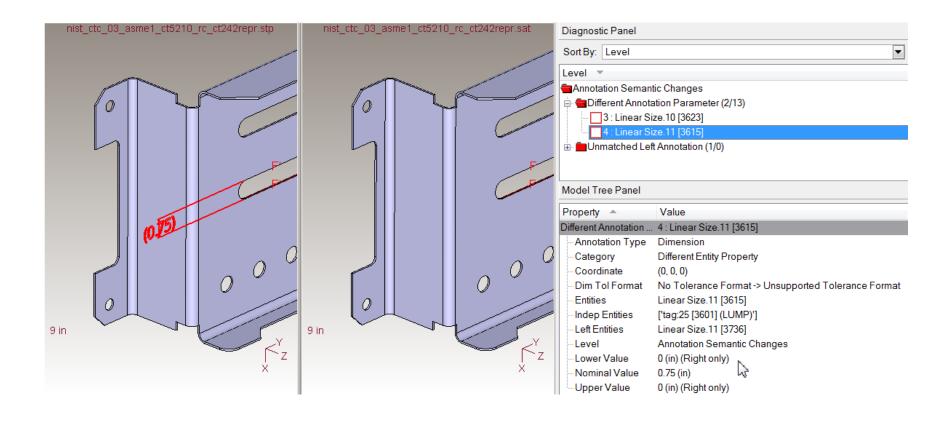







# Change to Feature Control Frame primary datum reference frame identifier












# Unformatted dimension with no tolerances gets tolerances set to zero













# **Example of PMI/STEP/ACIS/QIF Mapping Table**

|                                      | STEP AP242                                                | ACIS                                                     | QIF                                                              |
|--------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
| PMI                                  |                                                           |                                                          |                                                                  |
| dimension types                      |                                                           |                                                          |                                                                  |
| linear dimension                     | dimensional_location                                      | spaxpmi_dimension (DIMSUBTYPE_LENGTH_OR_DISTANCE)        | LengthCharacteristicDefinitionType                               |
| angular dimension                    | angular location/angular size                             | spaxpmi dimension (DIMSUBTYPE ANGLE)(no way to specify m | AngularCharacteristicDefinitionType                              |
| radius dimension                     | dimensional_size                                          | spaxpmi_dimension (DIMSUBTYPE_RADIUS)                    | RadiusCharacteristicDefinitionType                               |
| diameter dimension                   | dimensional_size                                          | spaxpmi_dimension(DIMSUBTYPE_DIAMETER)                   | DiameterCharacteristicDefinitionType                             |
| oriented dimension                   | orlented_dimensional_location                             | not covered                                              |                                                                  |
| curved dimension                     | dimensional location with path/dimensional size with path | spaxpmi_dimension(DIMSUBTYPE_CURVILINEAR)                | CurvedLengthCharacteristicDefinitionType                         |
| coordinate dimension                 |                                                           | spaxpmi_dimension(DIMSUBTYPE_COORDDIM2D, DIMSUBTYPE      |                                                                  |
| dimension tolerance principle        |                                                           |                                                          |                                                                  |
| independency                         | shape_dimension_representation.name                       | not covered                                              | EnvelopeRequirement(FALSE)                                       |
| envelope                             | shape_dimension_representation.name                       | not covered                                              | ⇒EnvelopeRequirement(TRUE)                                       |
| dimension values                     |                                                           |                                                          |                                                                  |
| nominal value                        | measure_representation_item                               | dimension value                                          | <>TargetValue                                                    |
| nominal value with qualifier         | qualified_representation_item                             | not covered                                              | ○TargetValue                                                     |
| nominal value with plus/minus bounds | plus minus tolerance                                      | not covered                                              | OPERING ASLIMIT (FALSE)                                          |
| value range                          | measure representation item                               | dimtol lower limit/dimtol upper limit                    | ⇒DefinedAsLimit(TRUE)                                            |
| tolerance class                      | limits and fits                                           | not covered                                              |                                                                  |
| dimension modifiers                  |                                                           |                                                          |                                                                  |
| basic/theoretical                    | descriptive_representation_item                           | dimension_type (dimtype_basic)                           | <>DimensionType(BASIC)                                           |
| reference/auxiliary                  | descriptive_representation_item                           | dimension_type (dimtype_reference)                       | ⇒DimensionType(REFERENCE)                                        |
| controlled radius                    | descriptive representation item                           | not covered                                              | RadiusCharacteristicDefinitionType<>ControlledRadius(TRUE)       |
| square                               | descriptive_representation_item                           | not covered                                              | SquareCharacteristicDefinitionType                               |
| statistical tolerance                | descriptive_representation_litem                          | dimension_type (dimtype_tolerance)                       | CharacteristicDefinitionBaseType<>StatisticalCharacteristic(TRUE |
| continuous foaturo                   | descriptive representation item                           | not counted                                              |                                                                  |









## **STEP-QIF Mapping Tables - Classes**

Global Product Data Interoperability Summit | 2016

#### PMI

- Dimension Types (19/21)
- Dimension Tolerance Principle (2/2)
- Dimension values (45/48)
- Tolerance Types (15/18)
- Tolerance Zone (13/18)
- Tolerance Modifiers (17/21)
- Unit based Tolerance (9/9)
- Datum reference modifiers (25/32)

#### Shape

- Topology (8/8)
- Surface Geometry (11/11)
- Curve Geometry (10/10)

#### Links

- PMI <-> Brep (both)
- PMI <-> Polyline presentation (both)
- Miscellaneous
  - Notes (both)
  - Flag Notes (QIF)
  - Surface Finish (QIF)
  - Tables (none)
  - Global or General Tolerances (none)
  - Views (both)

(# of STEP elements / # of QIF elements)











## Results

- Successfully demonstrated transfer of MBD design models from OEM to Supplier and from CAD to CAM and CM systems
- Proved that, for metrology, savings for MBD transfer over traditional, non-MBD, was significant (70% reduction in overall process time)
- Validation was a valuable check on data quality
- STEP and QIF have similar coverage, ACIS had gaps









## **Conclusions**

- Transformation of MBD downstream is still immature
- Transformation of Representation structures from STEP to ACIS requires automated validation
  - to ensure data integrity
  - to flag any losses during the transformation process
  - to establish confidence in the transformed data
- New recommended practices documents are required for data and processes associated with downstream uses
  - To address both near- and longer-term gaps
- QIF might be a stronger contender as the mechanism of choice for exchange between design and metrology
  - It has a better schema, more well aligned to the MBD domain
  - Few systems support this format yet







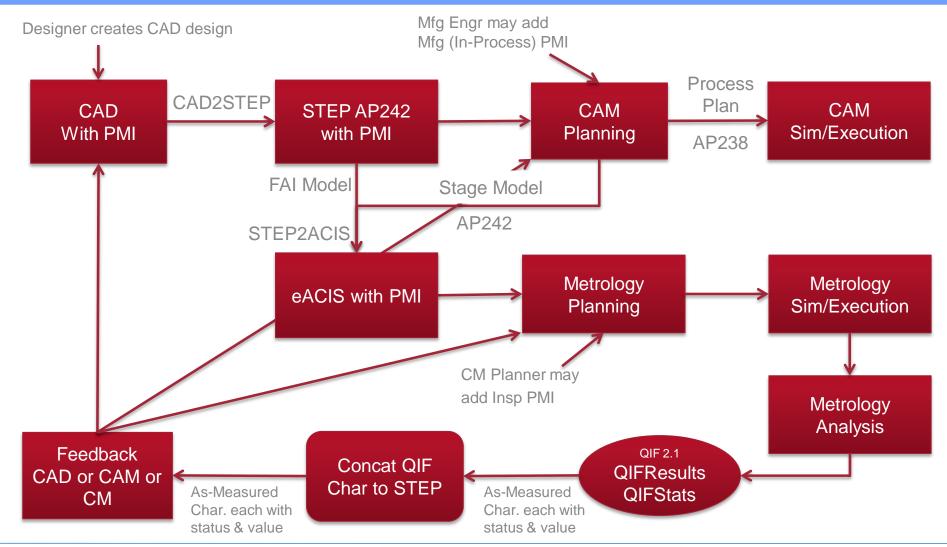


# Design to Metrology Filling in the Gaps

D2MIV 2

**DMDII 03** 












## **MBE Processes**













## D2MIV 2 and DMDII 03

Global Product Data Interoperability Summit | 2016

#### Near-term Gaps

- Measurement Geometry Taper Circle example (NIST FTC)
- UOS Tolerance
- Surface Roughness
- Agreed upon list of assoc. features and characteristics
- Criticality Attribute safety or functional
- Traceability UUIDs/QPids
- QIF Results back to Design and Manufacturing

#### Longer-term Gaps

- Authentication security checksum
- Extending Validation
- Metadata External to the model (who, what, where when and why)
- Certification to Standards





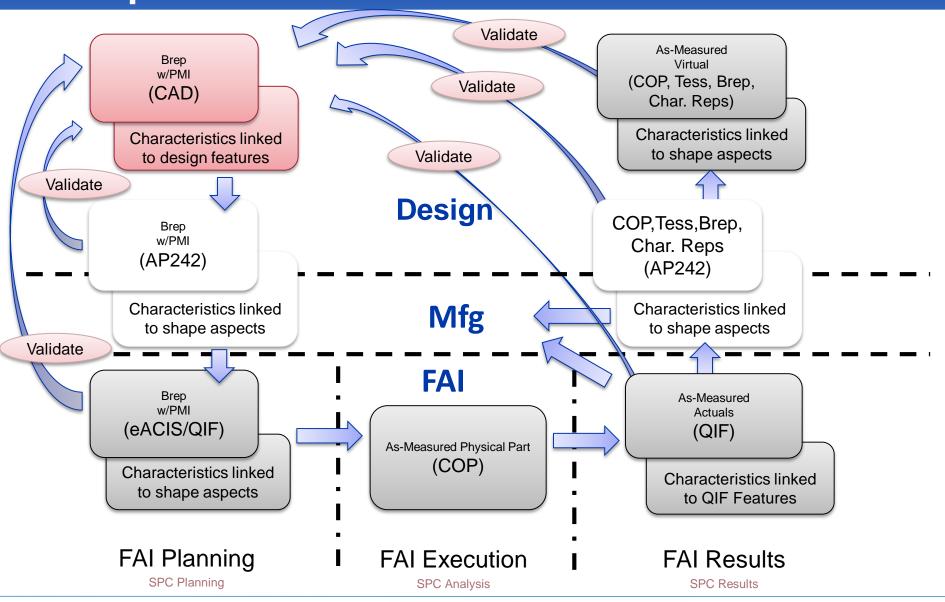




# Design to Metrology - Vision

TBD












# A Vision for Interop. between Design & Inspection









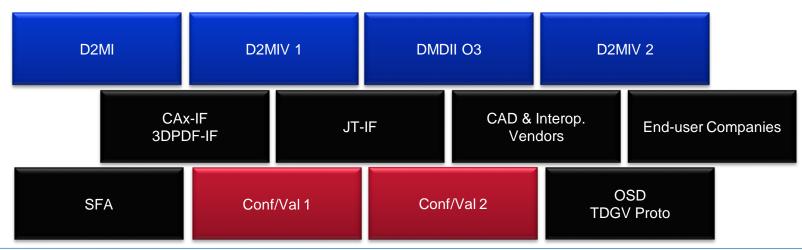




### **Next Steps**

- Gaps in PMI support important for Mfg/Metrology
  - Surface Finish, Welds, Material
  - Inclusion of Precision
  - UOS Tolerance
- Management of UUIDs for Traceability
  - Choice of UUID class
  - Insertion/Extraction of UUIDs on PMI
- Demonstration of feedback from Metrology (QIF) to Design/Manufacturing (STEP)
  - Alternate Shape Representations
  - Alternate PMI elements
  - Status










# In closing...

- The building blocks we are setting into place are now forming the foundation for a Standards-based MBE process
  - CAD companies, interop. vendors, end-users, and consortia are all engaged and benefiting from the results of early research
  - Engaging downstream vendors and consumers in the process will accelerate the momentum around MBE
  - Research is now beginning to deliver the promise of real benefits to downstream consumers of MBD data









