
Practical Augmented Reality in the PLM World

Eric MENOU Augmented Reality Expert DIĞINEXT / VMH

AGENDA

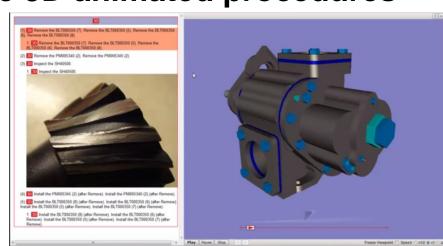
- Augmented Reality ... what for?
- AR uses cases
- Technical challenges
- Inscape AR in the PLM ecosystem
- Live demo
- Q&R

Aircraft assembly and maintenance challenges

Global Product Data Interoperability Summit | 2015

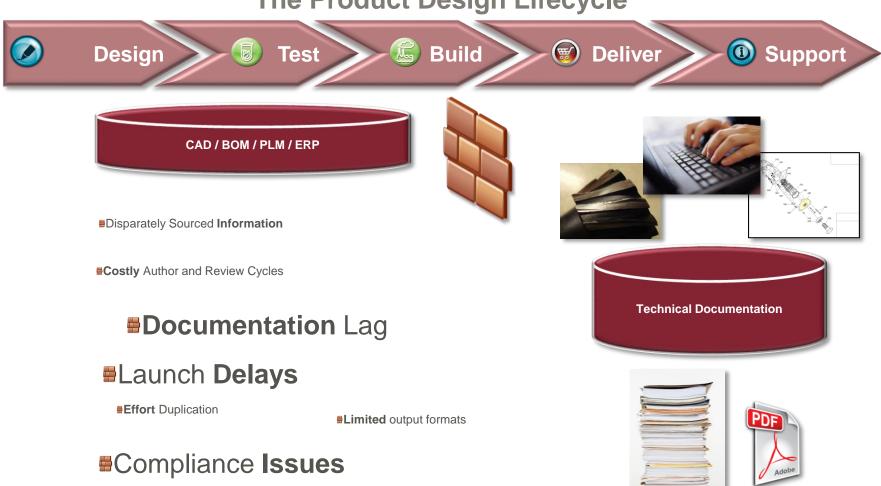
- Recent years have seen an increase in the complexity of maintenance operations
 - Human factors are the largest contributor to aircraft accidents
 - Major cause of flight delays and cancellations
 - Maintenance errors are one of the top three causes of aviation accidents
- Aircraft assembly lines mostly rely on human tasks

Documentation efficiency is critical



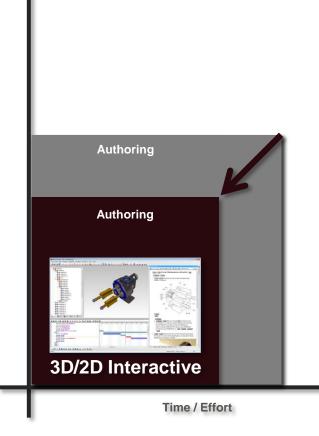
Aircraft assembly and maintenance challenges

- Common documentation support
 - Paper or electronic (PDF) documentation
 - Interactive electronic technical manual (IETM)
- Hierarchical procedures
 - Steps, sub-steps...
 - Illustrations, exploded views
- Most advanced tools provide 3D animated procedures



Traditional Process of Technical Publications

Global Product Data Interoperability Summit | 2015



Multi-format/Translation Issues

OEM – Business Value

Global Product Data Interoperability Summit | 2015

 Current Process **Deliverables**

7 2D / Static Print or PDF

Manually Illustrations

Digital Photography

→ Separate Text /Graphics

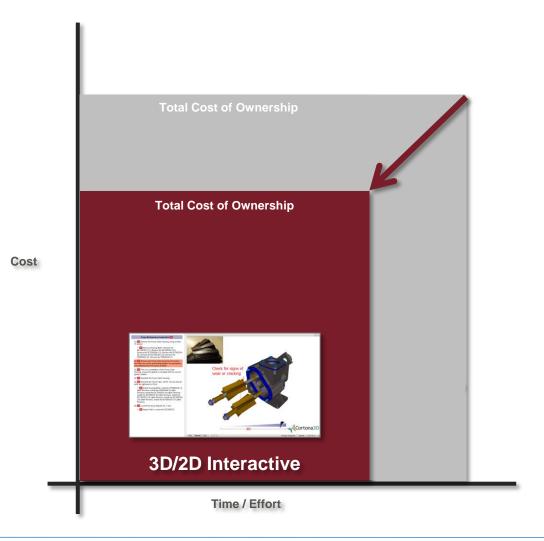
The Opportunity

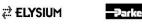
←CAD/BOM/PLM driven

Reuse/Repurpose data

∠ Integrate Text /Graphics

Automate updates

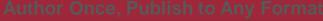


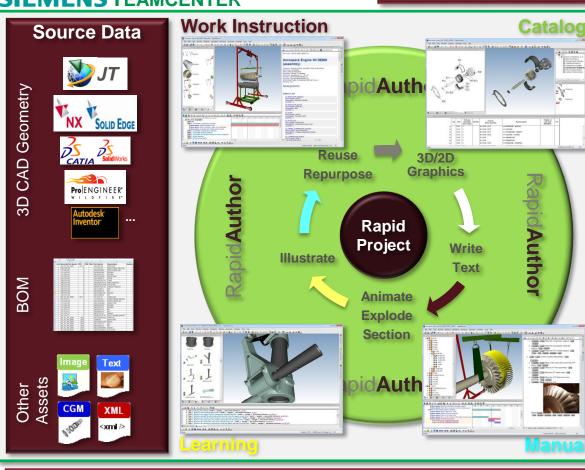


Cost

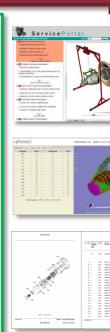
Operator – Cost Reduction

- Operator Issues
 - Product reliability/downtime
 - Parts identification errors
 - Cost of training
 - 7 Maintenance effectiveness
- The Opportunity
 - Better quality documentation
 - Faster understanding / training
 - Accurate parts identification
 - Decrease downtime





Integrated Technical Authoring Solution


Global Product Data Interoperability Summit | 2015

SIEMENS TEAMCENTER

Assembly and Maintenance Challenges

- Even IETM suffer from several limitations
 - Do not provide direct and easily accessible support
 - Searching the documentation is not efficient
 - Lots of eye/head movements between the equipment and the manual
 - Lack of spatial context
 - Operations to perform may be ambiguous
- Efficiency can be improved dramatically
 - Same documentation material
 - Better contextualization

Augmented Reality

Global Product Data Interoperability Summit | 2015

Augmented Reality (AR)

Augmented Reality Manuals

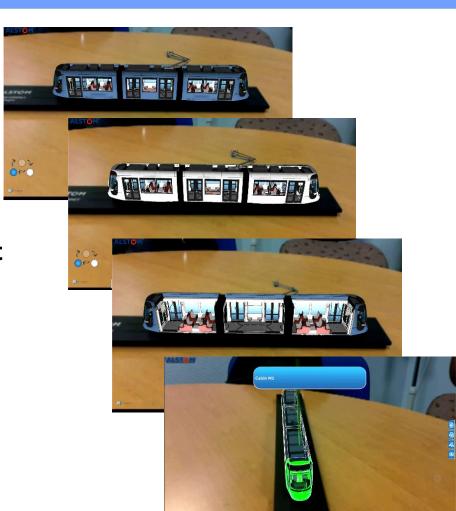
- Information superimposed within the user's view
 - Display relevant information at the right place and the right time
 - Documentation content overlaid onto real objects, directly on the location of interest
 - Describe which tasks to perform in what way
 - Display additional descriptions: security notice, tools
 - Link with other media: drawings, images, videos, HTML content
- Provide "on the-job support"
 - Direct and easy-to understand
 - Intuitive access to the relevant information

Augmented Reality Use Cases

- Many uses-cases, similar needs
 - Studies
 - Manufacturing
 - Assembly
 - Inspection
 - Support
 - Marketing
 - Training
 - Maintenance
 - Remote Assistance

- Assembly / maintenance support / training
 - 3D animated procedures
 - Textual documentation
 - Contextual multimedia content
 - Component location
 - Annotations
 - Report generation
 - Automatic task validation
 - Link with troubleshooting guide

- Inspection
 - Step by step instructions
 - Measurements
 - Alignment tools

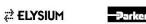


Global Product Data Interoperability Summit | 2015

Marketing

- Add virtual content
- Show hidden parts
- **Contextual multimedia content**
- **Component location**

- Remote Assistance
 - 3D animated procedures
 - On-the-fly annotations: labels, icons, hand drawing
 - **Component location**



Augmented Reality Use Cases

Global Product Data Interoperability Summit | 2015

Videos

- Alignment of virtual objects with real environment
 - Augmentations overlaid to camera images or direct vision
 - 3D virtual data must be aligned with the physical objects
 - Synchronize parameters of physical and synthetic cameras
- Tracking is one of the biggest technical challenges
 - Measure the exact position and orientation of the physical camera



- Tracking with external sensors
 - IR cameras
 - **Magnetic sensors**
 - **Inertial motion sensors**
 - Measuring arm

- Tracking: External sensors
 - Reliable and accurate
 - Requires a fixed reference (not mobile)
 - Instrumentation of the environment (sensors, cables...)
 - Occlusions

- Tracking: Image processing
 - Use device camera
 - Calculate position and orientation of the camera relative to some features of the environment
 - Markers can be attached to the equipment
 - Try to avoid this (Foreign objects damage)
 - Markerless tracking: detect labels or shape of the environment

- Tracking: Image processing
 - Lightweight
 - Requires extra work for each use-case
 - Define which feature is tracked
 - Retrieve and process the geometry
 - Calibrate and initialize the initial viewpoint
 - Not the most reliable, but most widely used solution
- Many products on the market
 - Few are really mature and can track 3D shapes markerless

Challenges: Display technologies

- Tablet
 - Proven solution requiring standard devices
 - Portable and lightweight
 - No latency
 - Intuitive user interface (touch screens)
 - Augmentations displayed onto a video stream
 - Not hand free
 - "Freeze"
 - Mobile mount

Challenges: Display technologies

- Projection
 - Hand-free
 - Intuitive: augmentations displayed directly on the equipment
 - Single user
 - Not suitable for animated content
 - Requires flat and matt surface
 - Occlusions
 - External surfaces only
 - **Heavy instrumentation**

Challenges: Display technologies

- Head-up display (see-though)
 - Direct view of the real world
 - Individual light-weight device
 - Hand free
 - User-dependent
 - Requires calibration
 - Latency
 - Requires high computing power
 - Narrow field of view
 - Current devices are not mature
 - Poor comfort
 - Low quality

Challenges: System and Application Design

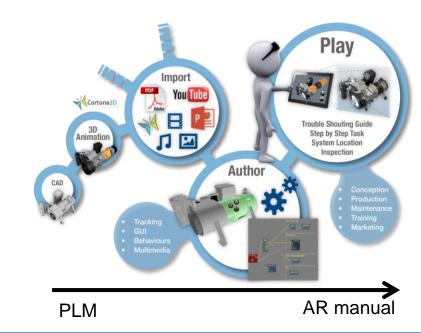
- Application must be comfortable to use
 - Take into account the industrial context
- Meet specific needs of each client / use-case
- Always provide a fallback strategy

Challenges: Workflow and integration

- AR is worthless without relevant content to display
 - Content must be adapted to fit AR constraints
 - Reduce geometric complexity
 - Keep only augmented parts
- Retrieve content from the PLM
 - Not just DMU and 3D animations
 - Hierarchical work instructions
 - Part catalog
 - Hyperlinks between textual instructions and 3D
- Conversion and processing cost can become significant with regard to the system development

Inscape AR in the PLM Ecosystem

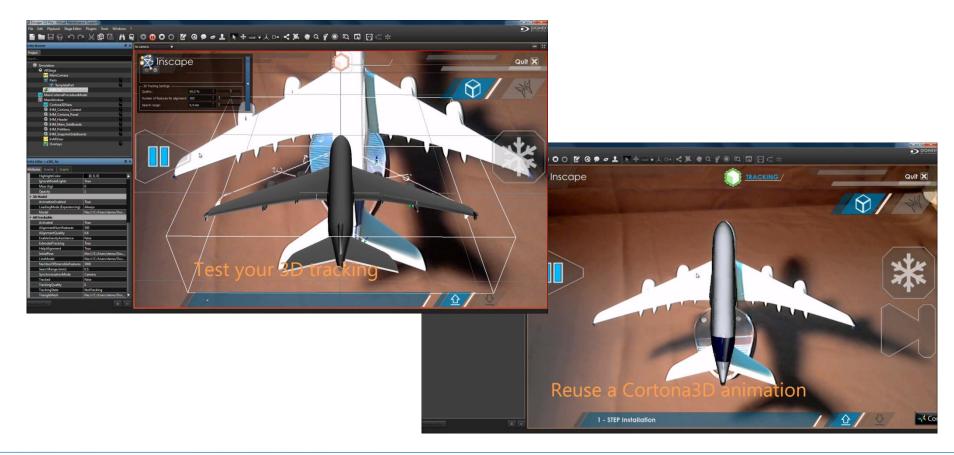
- Inscape AR
 - Graphical tool to quickly create AR interactive applications



Inscape AR in the PLM Ecosystem

- Strong re-use of existing data
- **Direct support of PLM formats**
 - DMU
 - Technical documentation
 - Hyper-text work instructions
 - Animations
 - Part catalog
 - No external tool required
 - Instant update from PLM
- Display Cortona3D animation
 - Not an exported file
 - **Integration of Cortona3D Engine**

Inscape AR in the PLM Ecosystem



Inscape AR

Global Product Data Interoperability Summit | 2015

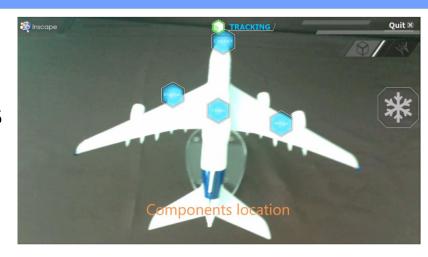
Inscape AR in action

Inscape AR Key Factors

- Support of all major standard formats
 - 3D
 - Multimedia
 - Documentation content
- Full autonomy
 - Client not captive from a 3rd party company
- Mixed usages: 3D and AR
 - AR sometimes doesn't have any added value
 - Fallback solution when tracking fails
- Very fast creation of custom applications
 - Template projects
 - Graphical definition of user interface and applications logics

Inscape AR Key Factors

- Technology agnostic
 - Interchangeable tracking and display solutions
 - Instantly benefit from the latest version of these products
- Open architecture
 - Interconnection with external systems (IT infrastructure)
- Multiplatform publication
 - Standalone executable for MS Windows
 - Android and iOS apps
 - Web application (standalone documentation)
- Offsite video testing



Augmented Reality Application Demonstration

- Component location
- Contextual information access
- Hidden components display
- Virtual content display
- 3D parts installation/removal
- Pictures and annotations
- Report generation

Questions?

