Attain Trusted Product Models

Curtis Brown
Honeywell FM&T
cbrown@kcp.com

Introduction

Global Product Data Interoperability Summit | 2017

Curtis W. Brown **Principal Mechanical Engineer Technology Focus Lead for Model-Based Enterprise (MBE)** cbrown@kcp.com

KCNSC's Project to implement MBE is: "Digital Product Realization Enterprise" (DPRE)

DPRE Vision Statement:

"Attain Trusted Product Models, Managed for Confident Reuse, Throughout our Enterprise"

KCNSC's MBE Maturity Index*

Global Product Data Interoperability Summit | 2017

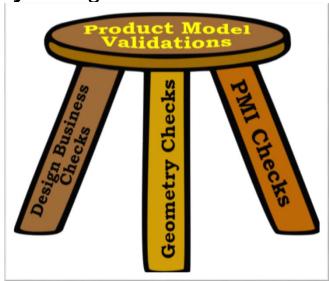
Model-Based Enterprise Maturity Index

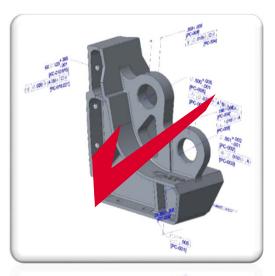
Apply the MBE Index for each Maturity Level: Capability, Readiness, Adoption

Drawing Centric	Model Centric	Trusted Model Centric	MBD Centric	Authorized MBD Centric	Internal MBE Centric	Extended MBE Centric
Level 0	Level 1	Level 2	Level 3	level 4	Level 5	Level 6
 2D Static Drawings Only Models Adhoc Models not managed Disconnected 	 3D Models create 2D Drawings STEP AP203 Derivative CAX STEP & 2D Drawings Models may be managed 	 3D Models create Drawings & Derivatives Models Checked, Derivatives Compared, & Managed Certificate of Model Quality CAX Derivatives w/ 2D Drawing Model Images WI 	• Source	e Model Cl arisons of	TYTOGE DUDEG	Distrat
File-Sharing	Doc-Centric PDM	Doc-Centric PDM	Part-Centric PLM	Part-Centric PLM	Digitally "1" PLM	Extended PLM
2D Drawings Authorized	2D Drawings Authorized	2D Drawings Authorized	2D Drawings Authorized	3D Model Authorized	3D Model Authorized	3D Model Authorized

From Document-Centric, 2D Drawing-Based to Part-Centric 3D Model-Based

^{*} Details are modified from original. Maintains the published MBE Capability Index baseline flavored for MBE at NSE




Digital Product Realization Enterprise

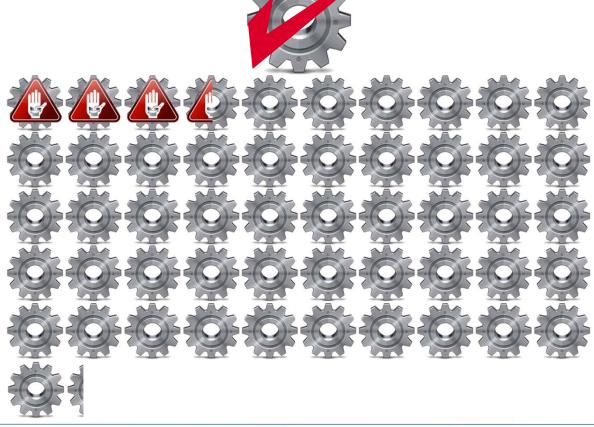
Global Product Data Interoperability Summit | 2017

Trusted Product Models...

- Validate Source Models
 - Design & Business Checks
 - Geometry Checks
 - PMI Checks
- Certify Model Quality through Validations

3D Product Models with Associative Annotations

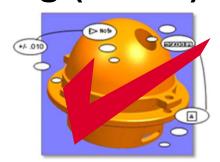
Multiple Checks for Multiple Purposes, all to gain a Certified Product Model



Trusted Product Models – Geometry Checks

Global Product Data Interoperability Summit | 2017

Status: 7% of the 513 model geometry checks had addressable geometry issues.



Trusted Product Models – PMI Checks

Global Product Data Interoperability Summit | 2017

Part Tolerance Definition Checking w/ Feature-Based Tolerancing (FBTol) Advisor

Documented FBTol Tolerance Definition Analysis from

- FBTol Averages (low-high)
 - 78.2% FBTol Score (30% 99.76%)
 - -24.1 Issues Identified (1-75)
- Tolerance Definition Complexity Average (low-high)
 - 83.7 Product Characteristics (5 1199)

Is your part's tolerance definition complete and correct? Most likely not.

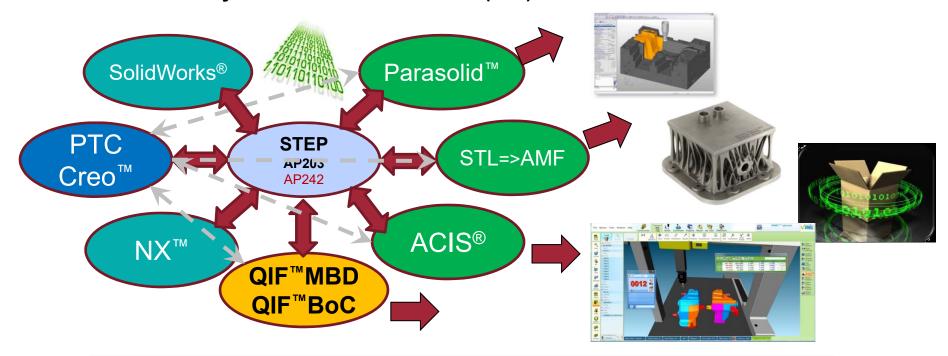
₹ ELYSIUM

Trusted Product Model - Certified

Global Product Data Interoperability Summit | 2017

- Manual Electronic Certificate
- Digital Manufacturing Certificate
- An Extension within Model File
 - A Digital Signature on Model file with Metadata
 - NIST DMC Toolkit
 - Digital Certificate of Model Quality (CoQ)
 - Certificate of Model Quality
 - Source Models: Check Quality
 - Derivative Models: Functionally Equivalent w.r.t. Source
 - Digital Certificate of Authorization for Reuse (CoR)
 - Digital Certificate of Authenticity (CoA)
 - Genuine, it is still what it is.

Indicates that the model is legitimate and verified, and then make it known.


Trusted Product Models with Confident Reuse

Global Product Data Interoperability Summit | 2017

Interoperability with Derivatives

- Derivative Models Certified as Functionally Equivalent to Source Model
- STEP is always an <u>Intermediary</u> Derivative Model
- Generate and Compare End Derivative Models
- Consider Quality Information Framework (QIF) Std.

Downstream Applications are Enabled by Derivatives

Summary

Global Product Data Interoperability Summit | 2017

If your enterprise relies on 3D Models

then they must be reliable models

AND then make it known.

CAD Validation at Honeywell Aerospace

Marco Vaquera

Why Validate?

Global Product Data Interoperability Summit | 2017

- Manual validation is cumbersome, impractical, and often impossible
 - Results are subjective and inconsistent; depend on:
 - Department
 - Person
 - Mood
 - Often overlooked
- Need a standardized assessment criteria to enable true interoperability
- Having an accepted Pass/Fail assessment acknowledged by different design authorities = major win toward implementation of validation strategy.

Types of Validation at Honeywell

Global Product Data Interoperability Summit | 2017

Derivative Validation

- Shape changes for translated models
- Pass/fail assessment based on pre-set validation criteria

X to STEP Validation

- Allows customizing the validation configuration specifically for STEP paths according to downstream use
- Pass/fail assessment based on pre-set validation criteria

Types of Validation at Honeywell (continued)

Global Product Data Interoperability Summit | 2017

Design Revision Documentation

- Identifies and highlights shape changes
 - Intended and unintended
 - Ensures conformance to ECO
- No pass/fail assessment
- Quality (PDQ) changes after CAD operation
 - Assess how particular operations change validation; helps designers understand how feature changes of data exchange affect model quality

Benefits of CAD Validation Implementation

Global Product Data Interoperability Summit | 2017

- Enables data exchange traceability
- Improves confidence in data exchange operations
- Helps meet customer and government requirements
- Standardization of validation recipes
 - Results are consistent throughout company
- Facilitate translator recipe enhancements
 - Identifying limitations

Additional Validation Insight

Global Product Data Interoperability Summit | 2017

- "Using our experience with different CAD solutions, we recognized that feeding the validation CAD files into a validation software is essentially a translation into the software modeling kernel, and only as good as its ability to faithfully represent this information. So we set up a QFD process to validate the offering that could better read a set of challenging CAD use cases we had identified as common in our data sets. We choose the solution that scored higher on the QFD."
- -- Marco Vaquera, Honeywell Aerospace

Example Validation Report

