Standards-Based
Interoperability for
Design to
Manufacturing and
Quality in the
Supply Chain –
Part 2

Asa Trainer GPDIS2017 Phoenix, AZ Sep 2017

Introduction

Global Product Data Interoperability Summit | 2017

International TechneGroup Incorporated (ITI)

- Private company headquartered in Cincinnati since 1983
- Development offices in the United States, England, Israel and India
- Engineering software and services
 - PLM system migration solutions
 - CAD interoperability solutions

Asa Trainer

- New England upbringing, military veteran
- Engineering education (UMD, WSU, RPI) and university educator/researcher
- Both aerospace and CAD industry experience
- Interoperability solutions development
- US and foreign patents in interoperability
- International consortia team member
- Interoperability product / process / program management

Acknowledgements

- The work described here is funded by
 - **NIST Grant (CA) 70NANB14H314**
 - Investigating the Impact of **Standards-Based Interoperability** for Design to Manufacturing and **Quality in the Supply Chain**
 - NIST Grant (CA) 70NANB14H256
 - Validation for Downstream **Computer Aided Manufacturing** and Coordinate Metrology **Processes**
 - DMDII-14-06-05
 - Digital Standards for the **Advanced Manufacturing Enterprise "Operate, Orchestrate** and Originate (O3)"

Building Blocks to a Stds-based MBE Process

Global Product Data Interoperability Summit | 2017

NIST Sponsored

Can we close upstream info gaps needed for downstream processes? Can we move downstream MBD back upstream as feedback via a Std?

Can we validate downstream MBD data against its upstream source? Can we map the upstream MBD Std to the downstream MBD Std?

Can we move MBD data to downstream processes (CAM/CAI) via a Std? Is there a demonstrable ROI in taking the MBD downstream?

Can we extend the Test Cases to include more "real-world" elements? If we do, what impact will it have on the results?

Can we define meaningful MBD Test Cases and Model them in CAD? Can we Verify that the models accurately represent the test cases? Can we create MBD Std-based Derivatives and Validate them?

Can we Validate STEP files for proper STEP syntax?

Can we coax better STEP file translators out of CAD OEMs & vendors?

Building Blocks to a Stds-based MBE Process

Global Product Data Interoperability Summit | 2017

DMDII 03 **Sommercially-sponsored** ea es **OSD TDGV Proto** CAx-IF 3DPDF-IF JT-IF other **End-user Companies** CAx & Interop.

Can we provide near real-time design change to the downstream users? Can we provide rapid feedback to designers & planners during simulation or execution?

Is there a better way to control geometric quality than global tolerances?

Can tolerance data in PMI be used to control variation in nominal geometry?

Can the NIST benchmark data and verification/validation processes be used to drive improvement in commercial MBD (interoperability) processes?

Can the NIST benchmark data be used to drive improvement In commercial MBD (interoperability) processes?

Can end-user companies leverage the NIST benchmark data and verification/validation processes?

Can CAx and Interoperability vendors leverage the NIST benchmark data and verification/validation processes?

Vendors

Design to Manufacturing

The Team

Data Exchange from CAD-to-CAM and CAD-to-CMM

Test Models and Results Metrics

Global Product Data Interoperability Summit | 2017

- CAD Model Creation Metrics
 - Introducing MBD Process into Design Org had some ramp-up (CAD system MBD issues, training reqmnts, etc)
- CAM Model Creation Metrics
 - MBD approach had similar cost to 2D approach
- CMM Model Creation Metrics
 - 70% reduction in cost over traditional 2D exchange

Please refer to Part 1 presentation, GPDIS 2016, for additional details

Design to Metrology Validation

Data Exchange from CAD-to-CMM (STEP to eACIS) with Validation

D2MIV Results Summary

Global Product Data Interoperability Summit | 2017

- RC Models
 - Focused on Heat Sink model validation 99% clean
 - Issues with Dims on Stand-off Model
- NIST CTCs
 - 25 models from 2 CAD systems, 5 vendors
 - Datum Targets were biggest issue (all systems, all vendors)
 - Success Rate Avg 80% (StdDev 15%)
 - One model bad (all systems, all vendors)

Please refer to Part 1 presentation, GPDIS 2016, for additional details

Validation of extended-ACIS PMI representation with Source STEP Model

Validation of extended-ACIS PMI representation with source STEP Model illustrating an anomaly

Validation illustrating loss of Associated Geometry for a Datum Target Symbol in target ACIS model

Change to Feature Control Frame primary datum reference frame identifier

STEP-QIF Mapping Tables - Classes

Global Product Data Interoperability Summit | 2017

PMI

- Dimension Types (19/21)
- Dimension Tolerance Principle (2/2)
- Dimension values (45/48)
- Tolerance Types (15/18)
- Tolerance Zone (13/18)
- Tolerance Modifiers (17/21)
- Unit based Tolerance (9/9)
- Datum reference modifiers (25/32)

Shape

- Topology (8/8)
- Surface Geometry (11/11)
- Curve Geometry (10/10)

Links

- PMI <-> Brep (both)
- PMI <-> Polyline presentation (both)
- Miscellaneous
 - Notes (both)
 - Flag Notes (QIF)
 - Surface Finish (QIF)
 - Tables (none)
 - Global or General Tolerances (none)
 - Views (both)

(# of STEP elements / # of QIF elements)

Please refer to Part 1 presentation, GPDIS 2016, for additional details

Results

- Successfully demonstrated transfer of MBD design models from OEM to Supplier and from **CAD to CAM and CM systems**
- Proved that, for metrology, savings for MBD transfer over traditional, non-MBD, was significant (70% reduction in overall process time)
- Validation was a valuable check on data quality
- STEP and QIF have similar coverage, ACIS had gaps

Design to Metrology Filling in the Gaps

D2MIV 2

DMDII 03

MBE Processes

Last Year's Next Steps

Global Product Data Interoperability Summit | 2017

- Gaps in PMI support important for Mfg/Metrology
 - Surface Finish, Welds, Material
 - Inclusion of Precision
 - UOS Tolerance
- Management of UUIDs for Traceability
 - Choice of UUID class
 - Insertion/Extraction of UUIDs on PMI
- Demonstration of feedback from Metrology (QIF) to Design/Manufacturing (STEP)
 - Alternate Shape Representations
 - Alternate PMI elements
 - Status

ELYSIUM

The Team

Demonstration Architecture

Global Product Data Interoperability Summit | 2017

More accurate, more timely and more automated <u>on-machine</u> measurement

1. AP242 Tolerances Gate 1: AP242 -> ACIS Model 1: Stage model Model 2: Tooling model Gate 2: MTConnect -> CMM Model 3: Result model **CNC** Gate 3: QIF -> AP242 2. MTConnect CMM with with Measurements **Twin** Gateways Models 3. QIF Inspection results

- 1. Share stage model with required tolerances between CNC and CMM
- 2. Machine part with results to CMM as touch points on features/characteristics
- 3. Evaluation of tolerance compliance with results back to CNC for any necessary action

Virtual model of part machined in Mukilteo

Global Product Data Interoperability Summit | 2017

Are the features in tolerance?

Measurement Process

Input: Tolerances and probe points in AP242

1. Planner*: Measurements from AP242

2. Digital twin measurements using AP238

3. Measurement points in MTConnect agent

Global Product Data Interoperability Summit | 2017

Path: path

Samples

Timestamp	Туре	Sub Type	Name	ld	Sequence	Value
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:CUTTING_TIME	p1CuttingTime	Mp1CuttingTime	27	UNAVAILABLE
2017-02-20T18:41:49.443571Z	PathFeedrate	ACTUAL	p1Fact	Mp1Fact	28	UNAVAILABLE
2017-02-20T18:41:49.443571Z	PathFeedrate	PROGRAMMED	p1Fcmd	Mp1Fcmd	29	UNAVAILABLE
2017-02-20T18:41:49.443571Z	PathPosition		p1LPathPos	Mp1LPathPos	30	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:OPERATING_TIME	p10peratingTime	Mp1OperatingTime	34	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:RUNNING_TIME	p1RunningTime	Mp1RunningTime	35	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:SPINDLE_RUN_TIME	p1SpindleRunTime	Mp1SpindleRunTime	36	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:TOTAL_CUTTING_TIME	p1TotalCuttingTime	Mp1TotalCuttingTime	38	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:TOTAL_OPERATING_TIME	p1TotalOperatingTime	Mp1TotalOperatingTime	39	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:TOTAL_RUNNING_TIME	p1TotalRunningTime	Mp1TotalRunningTime	40	UNAVAILABLE
2017-02-20T18:41:49.443571Z	AccumulatedTime	x:TOTAL_SPINDLE_RUN_TIME	p1TotalSpindleRunTime	Mp1TotalSpindleRunTime	41	UNAVAILABLE

http://swim.steptools.com:5000/current

Q ☆ **☆** ① △ ⋒ **☑** ✓ ⊘ :

Events

Timestamp	Type	Sub Type	Name	ld	Sequence	Value
2017-02-20T18:41:49.443571Z	e:BlockNumber		p1BlockNumber	Mp1BlockNumber	24	UNAVAILABLE
2017-02-20T18:41:49.443571Z	e:Variables	x:COMMON	p1CommonVariable	Mp1CommonVariable	25	UNAVAILABLE
2017-02-20T18:41:49.443571Z	ToolNumber		p1CurrentTool	Mp1CurrentTool	26	UNAVAILABLE
2017-02-20T18:41:49.443571Z	e:Macman	x:PANEL_HISTORY	p1MacManPanelHistory	Mp1MacManPanelHistory	31	UNAVAILABLE
2017-02-20T18:41:49.443571Z	e:OutputSignal	x:DRY_RUN	p1MachineOperationPanelOutputDryRun	Mp1MachineOperationPanelOutputDryRun	32	UNAVAILABLE
2017-02-20T18:41:49.443571Z	e:OutputSignal	x:MACHINE_LOCK	${\tt p1MachineOperationPanelOutputMachineLock}$	${\tt Mp1MachineOperationPanelOutputMachineLock}$	33	UNAVAILABLE
2017-02-20T18:41:49.443571Z	ToolAssetId		p1ToolAssetId	Mp1ToolAssetId	37	UNAVAILABLE
2017-02-20T18:41:49.443571Z	Block		p1block	Mp1block	42	UNAVAILABLE
2017-02-20T18:41:49.443571Z	Line		plline	Mp1line	43	UNAVAILABLE
2017-02-20T18:41:49.443571Z	PathFeedrateOverride	PROGRAMMED	pFovr	MpFovr	44	UNAVAILABLE
2017-02-20T18:41:49.443571Z	Execution		pexecution	Mpexecution	45	UNAVAILABLE
2017-02-20T18:41:49.443571Z	ControllerMode		pmode	Mpmode	46	UNAVAILABLE
2017-02-20T18:41:49.443571Z	PartCount		ppartcount	Mppartcount	47	UNAVAILABLE
2017-02-21T18:54:35.271Z	Program		pprogram	Mpprogram	346	BOXY_PART_IPM_OP8_20170216
2017-02-21T14:00:32.526- 05:00	Measurement		measure	p1_85		feature:"9ffd7cbf-25bd-4be9-ab37-90b7ee855c69" order:1 count:6 id:"FACE27463" characteristic:"3DLocation" x:-11.000000 y:-33.333333 z:10.002639

Linear: X

Samples

22 ELYSIUM

GRUMMAN

BOEING

4. MeasurLink* generating QIF Results

5. Viewer showing QIF Results in AP242

Global Product Data Interoperability Summit | 2017

GPDIS_2017.ppt | 31

ELYSIUM

Internal: UUID's that relate all the data

Global Product Data Interoperability Summit | 2017

STEP Data

QIF Data

mtconnect face probe results.log - Notepad

<u>File Edit Format View Help</u> 2017-02-20T15:32:24.223-05:00|measure|feature:"9ffd7cbf-25bd-4be9-ab37-90b7ee35c59" order:1 count:6 id:"FACE27454" characteristic:"3DLocation" x:-11.000000 y:-33.333333 z:9.500000 2017-02-20T15:32:24.385-05:00|measure|feature:"9ffd7cbf-25bd-4be9-ab37-90b7ee855c69" order:2 count:6 id:"FACE27454" characteristic:"3DLocation" x:-11.000000 y:-26.666667 z:9.500000 2017-02-20T15:32:24.711-05:00|measure|feature: "9ffd7cbf-25bd-4be9-ab37-90b7ee855c69" order:3 count:6 id: "FACE27454" characteristic: "3DLocation" x:0.000000 y:-33.333333 z:10.0000000 2017-02-20T15:32:25.186-05:00|measure|feature:"9ffd7cbf-25bd-4be9-ab37-90b7ee855c69" order:4 count:6 id:"FACE27454" characteristic:"3DLocation" x:0.000000 y:-26.666667 z:10.000000 2017-02-20T15:32:25.806-05:00|measure|feature:"9ffd7cbf-25bd-4be9-ab37-90b7ee855c69" order:5 count:6 id:"FACE27454" characteristic:"3DLocation" x:11.000000 y:-33.333333 z:10.500000 2017-02-20T15:32:26.592-05:00|measure|feature:"9ffd7cbf-25bd-4be9-ab37-90b7ee855c69" order:6 count:6 id:"FACE27454" characteristic:"3DLocation" x:11.000000 y:-26.666667 z:10.500000

Global Product Data Interoperability Summit | 2017

Planning

- UUID assigned to each tolerance and characteristic in STEP
- UUID translated into CMM server database

Manufacturing

- UUID of measured characteristic put into MTConnect stream
- UUID of measured characteristic put into QIF results
- UUID of corresponding tolerance put into QIF results
- UUID of tolerance read by digital twin

Why? - Increased Productivity

- Design requirements sent direct to planning and manufacturing
 - Automated planning to meet the tolerances
 - Automated detection and correction of anomalies
- Integration of CNC and CMM functions
 - Single setup
 - On demand measurement
- Tooling optimization
 - Feed speed optimization
 - Adaptive programming

D2MIV 2 and DMDII 03

Global Product Data Interoperability Summit | 2017

- Near-term Gaps
 - Measurement Geometry Taper Circle example (NIST FTC)
 - UOS Tolerance

Demonstrated

- Surface Roughness
- Agreed upon list of assoc. features and characteristics
- Criticality Attribute safety or functional
- Traceability UUIDs/QPids

Demonstrated

QIF Results back to Design and Manufacturing

Demonstrated

- Longer-term Gaps
 - Authentication security checksum
 - Extending Validation
 - Metadata External to the model (who, what, where when and why)
 - Certification to Standards

Design to Metrology - Vision

A Vision for Interop. between Design & Inspection

Next Steps

- Gaps in PMI support important for Mfg/Metrology
 - Surface Finish, Welds, Material
 - Inclusion of Precision
 - UOS Tolerance
- UUIDs for Traceability
 - Recommended Practice for Cax Testing
- Demonstration of feedback from Metrology (QIF) to Design/Manufacturing (STEP)
 - Add Alternate Shape Representations
 - Add Alternate PMI elements
 - Add Status and RPN

In closing...

- The building blocks we are setting into place are now forming the foundation for a Standards-based MBE process
 - CAD companies, interop. vendors, end-users, and consortia are all engaged and benefiting from the results of early research
 - Engaging downstream vendors and consumers in the process will accelerate the momentum around MBE
 - Research is now beginning to deliver the promise of real benefits to downstream consumers of MBD data

