Additive Manufacturing

From Trial and Error to a Standard Industrial Process
Topics

Global Product Data Interoperability Summit | 2017

• Introduction
• Process Simulation of AM
 – Metals
 – Polymers and Composites
• Conclusion
Additive Manufacturing (AM) opens up amazing possibilities
It also comes with its own, unique challenges

- Optimized Shape
- Reduced Try-Out
- First Time Right
- Shorter Print Time
- Optimal Support Structure
- Minimize material Usage
- Efficient Serial Production
- Correct Microstructure
- Porosity
- Part Performance

Global Product Data Interoperability Summit | 2017
Main challenges

Global Product Data Interoperability Summit | 2017

• Distortion
 – Part out of tolerances
 – Collision with powder scraper

• Residual Stresses
 – Part of support failure

• Quality
 – Porosity
 – Microstructure
Additive Manufacturing (AM) Process

Design Build Inspect
With manufacturing simulation
AM Process Simulation
Analysis scales

Global Product Data Interoperability Summit | 2017

- Moving heat source
- Transient fully thermo-mechanically metallurgical coupled
- Delivers thermal history and derived results like microstructure

- Element layer (> powder layer) analyzed in one step
- Inherent Strains - pure mechanically, extremely fast
- Delivers Distortion & Stress

- Element layer analyzed in one step or by hatching segments
- Thermal, mechanical or thermo-mechanically coupled
- Able to deliver approximate thermal history and derived

micro scale meso scale macro scale
Macro scale

Global Product Data Interoperability Summit | 2017

Implementation
- Voxel technique
- Inherent strain
- Layer based

Results
- Part distortion
- Residual stress

Benefit
- Extremely fast
- Simple calibration

CPU Time
5 minutes
Voxel technique with solid fraction
Inherent strain

Global Product Data Interoperability Summit | 2017

Comprise
- Plastic strains
- Thermal strains
- Creep strains
- Phase transformation strains

Reflect
- Material
- Manufacturing parameters
- (Individual) machine

Are orthotropic by nature
Calibration of inherent strain by simple cantilever build

Global Product Data Interoperability Summit | 2017

Step 1: Build cantilevers ➔ Cut ➔ Measure tip displacement
Step 2: Automatic calibration

Store in database
Once calibrated, run simulations on actual parts
Validation Examples
Validation example
Validation example
Validation example
Global Product Data Interoperability Summit | 2017
Validation example

Global Product Data Interoperability Summit | 2017

Distortions

<table>
<thead>
<tr>
<th>Point</th>
<th>Simulation (mm)</th>
<th>Experiment (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3539</td>
<td>0.3532</td>
</tr>
<tr>
<td>2</td>
<td>0.5527</td>
<td>0.5517</td>
</tr>
<tr>
<td>3</td>
<td>0.5931</td>
<td>0.5920</td>
</tr>
</tbody>
</table>

Cross Section Contour Distortion

- **Simulation**
- **Experiment**

Scaled displacement = 10x
Validation example

Parameter Set 1

Sinterline® powder (Glass beads reinforced polyamide)

Experiment

Simulation
Validation example

Global Product Data Interoperability Summit | 2017

Stratasys – Composite Tooling

Warpage prediction after geometry compensation in Digimat-AM.
Left: superposition of the as-printed (red) and as-design (green) parts.
Right: RMS signed distance. Maximum deviation is below 0.1 mm.
Virtually explore the influence of:

- Manufacturing parameters & materials
- Cutting direction & supports removal sequence
Virtually explore the influence of:

Global Product Data Interoperability Summit | 2017

- Build orientation

- Support structure configuration
Virtually explore the influence of:

- Process chain

- AM Build
- Heat Treatment
- Cut from Plate
- Cooling
- Remove Supports
- HIP
Virtually explore the influence of:

- Optimal compensated shape
Polymers Example
Consideration of polymer parts

Global Product Data Interoperability Summit | 2017

Additive Layer Manufacturing

- FFF/SLS
 - Process Simulation
 - Part Performance
 - Material Engineering
 - Mechanical
 - Thermal
 - Electric
 - Warpage
 - Residual Stress
 - Porosity
 - Stiffness
 - Failure
 - Print Direction
 - Reinforcement
 - Reinforcement
 - Reinforcement
Sinterline® plenum chamber; Powder Bed Fusion (SLS)

Global Product Data Interoperability Summit | 2017

• Plenum is part of the Polimotor project (all plastics engine)
• Long-term goals:
 • Introducing plastic parts in future automotive engines
 • Highlighting trailblazing polymer technologies and their potential
• Challenge: the additively manufactured plenum must demonstrated that:
 • It can withstand the working loads
 • It can perform with same reliability as its injection molded counterpart
Material characterization with nonlinear micro-mechanics

Global Product Data Interoperability Summit | 2017

Input

Homogenization

Output

Mean Field

Finite Element

\[
\Delta\varepsilon_r = \langle \Delta\varepsilon(x) \rangle_r = H_r : \Delta E
\]

Global behavior

Localization

\[
\Delta\sigma_r = c_r : \Delta\varepsilon_r
\]

Local phase behavior

Averaging

\[
\Delta\sigma = \tilde{c}(c_r) : \Delta\varepsilon
\]

Stress

Strain

Fiber orientation

EXHIBITION | 2017
Sinterline® material characterization

Global Product Data Interoperability Summit | 2017

Stress-Strain curves and Failure dependent on printing orientation

Tensile test (RH0), depending of printing orientation, compare to Digimat model

- True Stress (MPa) vs. True Strain (%)
- Samples printed at: 0°, 15°, 30°, 45°, 60°, 75°, 90°
- Failure points

Compressive tests (RH0) depending on samples printing orientation, compare to Digimat model

- True Stress (MPa) vs. True Strain (%)
- Experimental vs. Digimat model
- Samples printed at: 0°, 15°, 30°, 45°, 60°, 75°, 90°
Simulate AM build process
Performance analysis

Global Product Data Interoperability Summit | 2017

Pressure at failure for different build orientations

• Build in width direction 12.8 bars
• Build in height direction 12.0 bars
• Build in length direction 8.1 bars
• Build in angled orientation 9.1 bars
Experimental testing

Global Product Data Interoperability Summit | 2017

• Method
 • Pressure increase by steps up to 6 bars positive air pressure inside the plenum
 • Pressure release to ambient pressure after 1 hour at 100 degrees C

• Conclusion
 • No burst of the part during test validation of part strength
 • Test successful

![Experimental pressure profile](image1)
![Experimental set up](image2)
Metal AM Simulation - Prediction of microstructure

Transient simulation with microstructure in cooperation with MRL

- AM- LPBF
 - Ti6Al4V
 - CoCr
 - 316L
 - IN625
 - IN718

- SEM EBSD
 - 100 Million orientations
 - >10,000 Images

- 7 °C/min
 - 1500°C/min
 - High-Throughput HT & mechanical testing

- AM Processing and Performance FE simulations

- AM ICME platform for data analytics, material modeling, and FEM simulations
Conclusion

Global Product Data Interoperability Summit | 2017

- You can design amazing structures – simulation is a must to reliably print them

- Simulation is required for:
 - the whole process (build, cut, heat-treat),
 - the complete chain (material, process, performance)
 - At different scales (macro, meso, micro)

- New simulation tools are available and are advancing rapidly