Additive Manufacturing

From Trial and Error to a Standard Industrial Process

BOEING is a trademark of Boeing Management Company Copyright © 2017 Boeing. All rights reserved. Copyright © 2017 Northrop Grumman Corporation. All rights reserved. GPDIS 2017.ppt | 1

Topics

Global Product Data Interoperability Summit | 2017

- Introduction
- Process Simulation of AM
 - Metals
 - Polymers and Composites
- Conclusion

₹ ELYSIUM

Additive Manufacturing (AM) opens up amazing possibilities

It also comes with its own, unique challenges

Main challenges

Global Product Data Interoperability Summit | 2017

Distortion

- Part out of tolerances
- Collision with powder scraper

Residual Stresses

Part of support failure

Quality

- Porosity
- Microstructure

Additive Manufacturing (AM) Process

Global Product Data Interoperability Summit | 2017

Design

Build

Inspect

With manufacturing simulation

AM Process Simulation

Analysis scales

Macro scale

Global Product Data Interoperability Summit | 2017

IMPLEMENTATION

- Voxel technique
- Inherent strain
- Layer based

RESULTS

- Part distortion
- Residual stress

BENEFIT

- Extremely fast
- Simple calibration

CPU Time 5 minutes

Voxel technique with solid fraction

Inherent strain

Global Product Data Interoperability Summit | 2017

Comprise

- Plastic strains
- Thermal strains
- Creep strains
- Phase transformation strains

Reflect

- Material
- Manufacturing parameters
- (Individual) machine

Are orthotropic by nature

Calibration of inherent strain by simple cantilever build

Global Product Data Interoperability Summit | 2017

Step 1: Build cantilevers → Cut → Measure tip displacement

Calibration of inherent strain by simple cantilever build

Global Product Data Interoperability Summit | 2017

Step 2: Automatic calibration

Store in database

Once calibrated, run simulations on actual parts

Global Product Data Interoperability Summit | 2017

NTT Data

Global Product Data Interoperability Summit | 2017

Distortions

Point	Simulation (mm)	Experiment (mm)
1	0.3539	0.3532
2	0.5527	0.5517
3	0.5931	0.5920

Cross Section Contour Distortion

Scaled displacement = 10x

Global Product Data Interoperability Summit | 2017

Sinterline® powder (Glass beads reinforced polyamide)

Global Product Data Interoperability Summit | 2017

Stratasys – Composite Tooling

Warpage prediction after geometry compensation in Digimat-AM. Left: superposition of the as-printed (red) and as-design (green) parts. Right: RMS signed distance. Maximum deviation is below 0.1 mm.

Global Product Data Interoperability Summit | 2017

Manufacturing parameters & materials

• Cutting direction & supports removal sequence

Global Product Data Interoperability Summit | 2017

Build orientation

• Support structure configuration

Global Product Data Interoperability Summit | 2017

Process chain

Global Product Data Interoperability Summit | 2017

Optimal compensated shape

Polymers Example

Consideration of polymer parts

Sinterline® plenum chamber; Powder Bed Fusion (SLS)

- Plenum is part of the Polimotor project (all plastics engine)
- Long-term goals:
 - · Introducing plastic parts in future automotive engines
 - Highlighting trailblazing polymer technologies and their potential
- Challenge: the additively manufactured plenum must demonstrated that:
 - · It can withstand the working loads
 - · It can perform with same reliability as its injection molded counterpart

Material characterization with nonlinear micromechanics

Sinterline® material characterization

Global Product Data Interoperability Summit | 2017

Stress-Strain curves and Failure dependent on printing orientation

Compressive tests (RH0) depending on

Simulate AM build process

Performance analysis

Global Product Data Interoperability Summit | 2017

Pressure at failure for different build orientations

•	Build	in	width	direction	12.8	bars
---	-------	----	-------	-----------	------	------

Build in height direction 12.0 bars

• Build in length direction 8.1 bars

• Build in angled orientation 9.1 bars

Experimental testing

Global Product Data Interoperability Summit | 2017

Method

- Pressure increase by steps up to 6 bars positive air pressure inside the plenum
- Pressure release to ambient pressure after 1 hour at 100 degrees C

Conclusion

- No burst of the part during test validation of part strength
- Test successful

Metal AM Simulation - Prediction of microstructure

Global Product Data Interoperability Summit | 2017

Transient simulation with microstructure in cooperation with MRL

AM ICME platform for data analytics, material modeling, and FEM simulations

Conclusion

Global Product Data Interoperability Summit | 2017

- You can design amazing structures simulation is a must to reliably print them
- Simulation is required for:
 - the whole process (build, cut, heat-treat),
 - the complete chain (material, process, performance)
 - At different scales (macro, meso, micro)
- New simulation tools are available and are advancing rapidly

₹ ELYSIUM

