MBSE
Multi-Model,
Multi-Domain
Interoperability

Greg Pollari – Rockwell Collins Nigel Shaw - Eurostep

My name is Greg Pollari

- Rockwell Collins
- Principal Systems & Process Engineer
- Degrees in Physics, Electrical & Computer Engineering, Business Administration
- SAVI (Systems Architecture Virtual Integration) project lead
- Organizations (past and present)
 - GPDIS MBSE track co-lead
 - INCOSE
 - Mossec
 - Purdue PLM Center
 - PDES Inc.
 - NDIA Systems Engineering Modeling & Simulation Committee

My name is Nigel Shaw

- Managing Director of Eurostep Limited since 1995
- Previously with British Aerospace, Leeds University
- Degrees in Geophysics and Computation
- Involved in STEP since 1986
- Chair of ProSTEP Round Table, 1995-1998
- Technical Lead for PLCS Inc. 1999-2005
- Eurostep PM for CRESCENDO, CONGA and TOICA
- Eurostep PM for our work with SAVI
- Standards geek, believer and analyst
- Interoperability challenger

SAVI – The Starting Point

Global Product Data Interoperability Summit | 2017

SAVI (Systems Architecture Virtual Integration)

AVSI (Aerospace Vehicle Systems Institute) project

- Leverages distributed inter-domain, intermodel consistency checks
- **Protects IP** (Intellectual Property)
- Maintains configuration management
- Captures incremental evidence for safety analysis and certification
- Addresses security analysis
- Reduces cost and development time

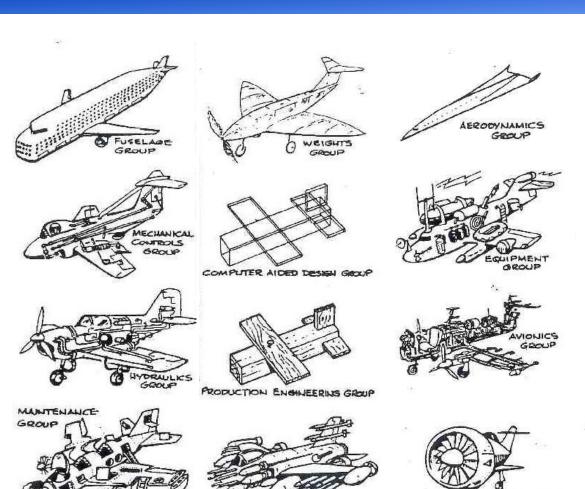
SAVI Foundation

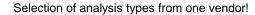
- SAVI Model Repository (MR)
- SAVI Data Extraction Layer (DEL)
- SAVI Virtual Integration Process (VIP)

Tool Vendor Partners: Adventium Labs, Esterel Technologies, Eurostep

SAVI – The Problem

- Model Based Engineering is the way modern products and systems are built
 - System complexity increasing
 - Shared resources
 - Complex interfaces
- Now likely to join models together into bigger simulations
 - Need consistent models
- Independent models of the same system can be inconsistent

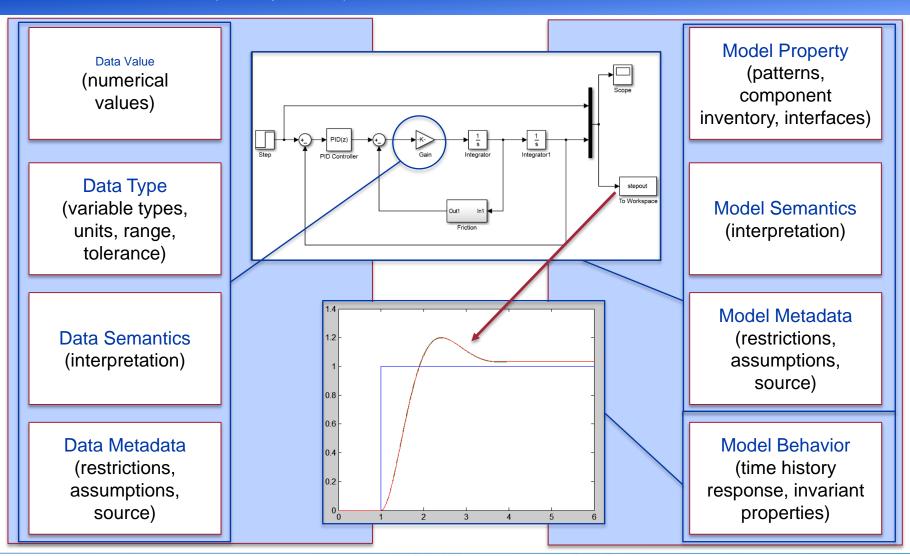



Many groups, each with their own methods, tools and models

Global Product Data Interoperability Summit | 2017

Acoustics Buckling and Collapse CAD Integrated Analysis Composites Computational Fluid Dynamics Contact and Impact Crashworthiness **Durability and Fatigue Electromagnetics** Fluid Structure Interaction **Forming** Fracture and Failure **Impact Multibody Dynamics Noise and Vibration Optimization Process Automation** Sealing **Shock and Vibration Thermal**

Drawings based on: C. W. Miller, c1948, "Dream Airplanes" Design Engineer, Vega Aircraft Corp



POWER PLANT GROUP

Many models = Increased Risk of Inconsistency **SAVI** identified inconsistency types:

Models and their characteristics

- Format
 - e.g. SysML, AADL, Modelica, Simulink, ...
 - e.g. XML, CSV, Binary, Excel, proprietary, code
- Purpose
 - All models have a purpose
- Content
 - Scope: What has been included and what excluded/assumed?
 - "The database is the Model" or "the Model is the database"
- Meta data
 - Versioning, Life cycle state
- Structures
 - Derived from real world vs. Abstracted from real world

Interoperability

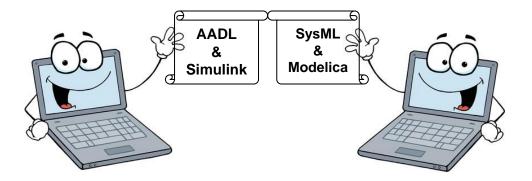
- Tools
 - Classic problem: My tool cannot read your model/data
- Organizations and extended enterprise
 - We use different tools and/or paradigms
 - Our modeller cannot read/understand your model
 - Our modeller has used different conventions
 - Modelling style
 - Naming

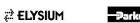
Extraction

- Consistency and Comparison
 - To compare need to be able to extract things that should be the same and test
- Search
 - Does a model include X where X is a part or a function or an action?
- As a source: Onward through life...
 - For some models payback comes later

Change management

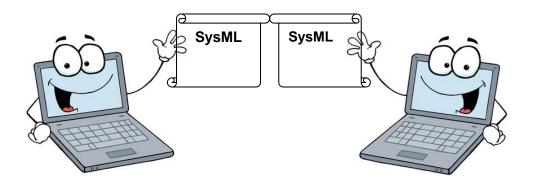
- Traceability
 - **Between Models**
 - **Between things in the Models**
 - Only if you can either extract or point at things within models

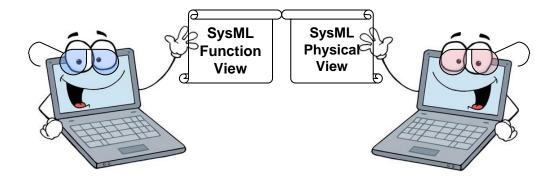




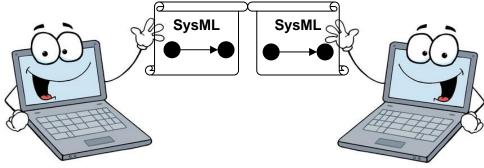
Global Product Data Interoperability Summit | 2017

Different languages




- Different languages
- Same Language different usage
- Modelling style
- Modelling conventions
- Human/Organization Factors
 - Naming & Identifiers
 - Taxonomies
- Processor style

- Different languages
- Same Language different usage

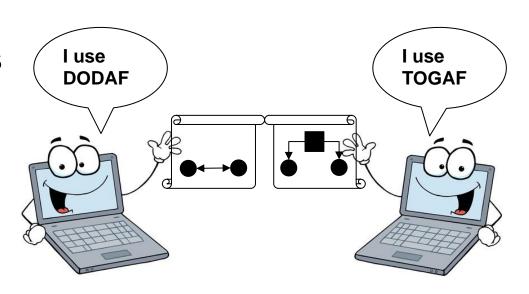


Global Product Data Interoperability Summit | 2017

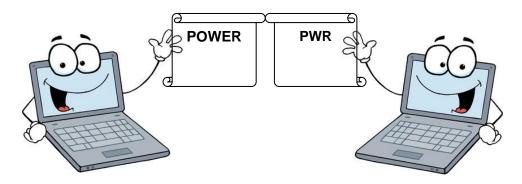
- Different languages
- Same Language different usage
- Modelling style

A has a Port called C and B has a Port called C The ports are connected

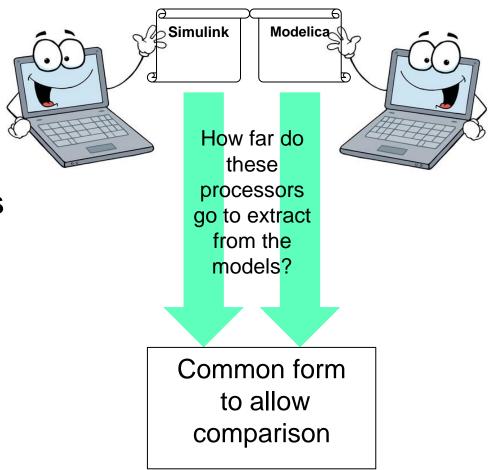
A is connected to B via Ports. The connection carries signal C



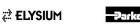
- Different languages
- Same Language different usage
- Modelling style
- Modelling conventions



- Different languages
- Same Language different usage
- **Modelling style**
- **Modelling conventions**
- Human/Organization **Factors**
 - Naming & Identifiers
 - Taxonomies



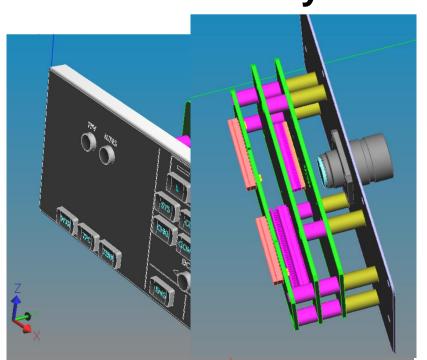
- Different languages
- Same Language different usage
- **Modelling style**
- **Modelling conventions**
- Human/Organization **Factors**
 - Naming & Identifiers
 - Taxonomies
- Processor style

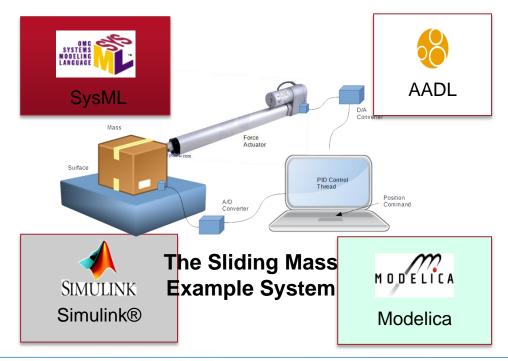

Interoperability

Global Product Data Interoperability Summit | 2017

Bad news: Frustrating when not possible to interoperate

Good news: Failure to interoperate reduces duplication!




SAVI experiences

Global Product Data Interoperability Summit | 2017

 Virtual assembly of a printed circuit card assembly

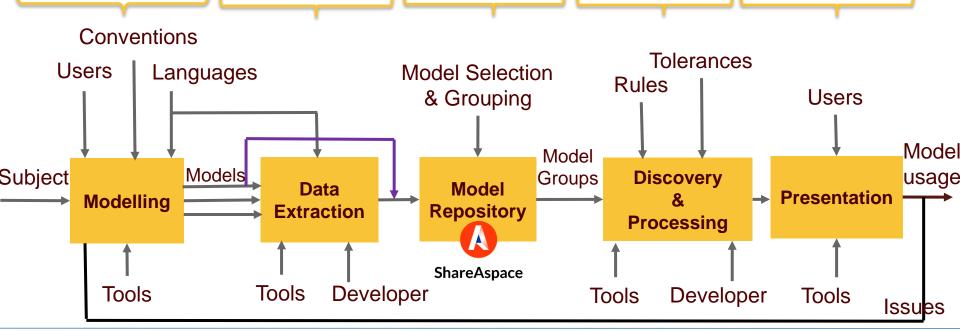
 Consistency of models in different languages

SAVI experience – Model pre-flight checks

Global Product Data Interoperability Summit | 2017

Root cause of the problem: differences in Users & Enterprises Languages & Tools

Conventions

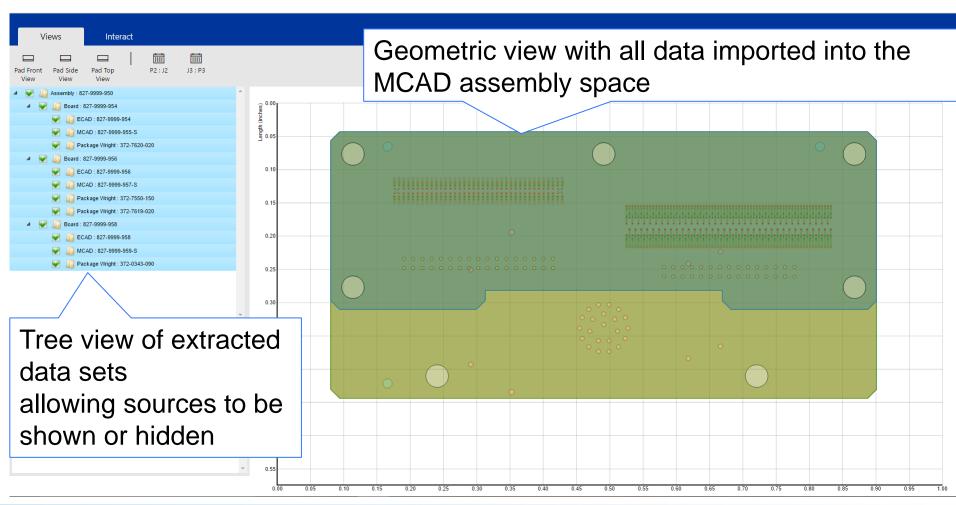

Values

Extract content into a common view

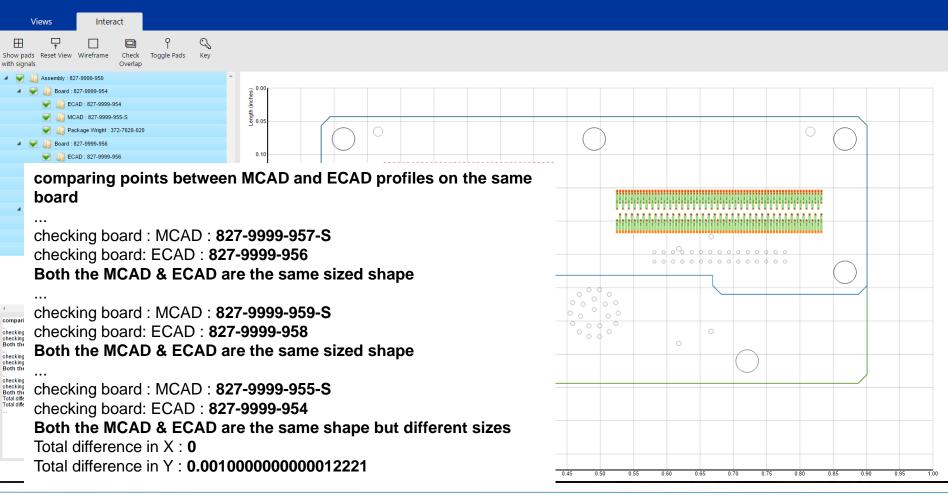
Manage model meta data and

Process extracted data extracted content and apply checks

Present extracted data & check results

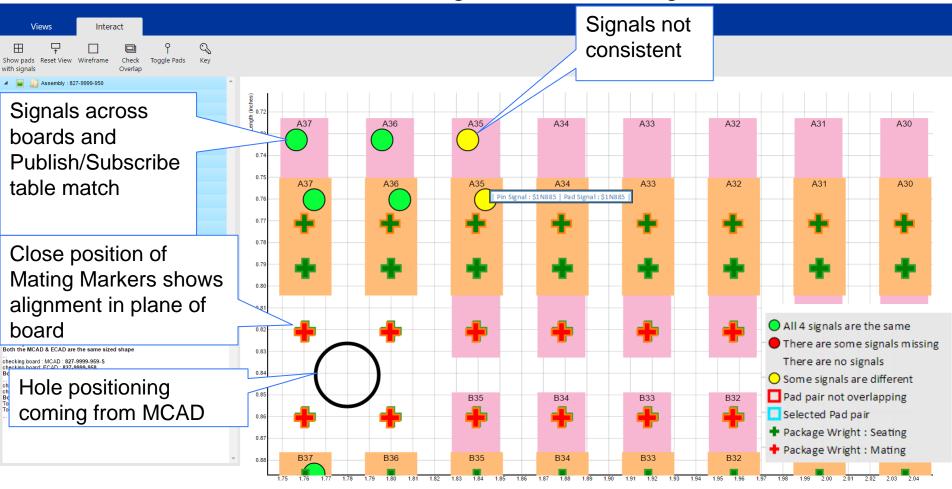


Virtual Integration: ECAD and MCAD and more



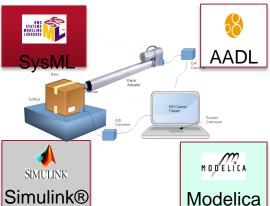
Global Product Data Interoperability Summit | 2017

Q1: How well do the MCAD and ECAD boards match up?



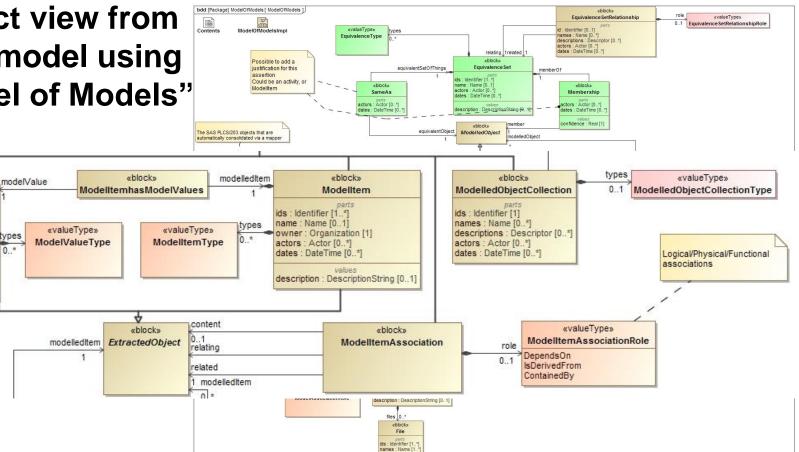
Global Product Data Interoperability Summit | 2017

Q2: How well do connectors align? Q3: Are the signals consistent?



Model consistency checking

- In the generic case, need to identify where "things" should be consistent, then test if they are consistent
- Extracted a single form from all models, i.e. into the "model of models"
- Enabled:
 - Rule engine used to find equivalences
 - The user to identify equivalences and look for consistency
 - Edit results from the rule engine
 - Identify patterns that should match across models
 - Apply rules to determine/test consistency
- Used fuzzy comparison due to differences in names and conventions



Model of Models

Global Product Data Interoperability Summit | 2017

 Extract view from each model using "Model of Models"

«block»

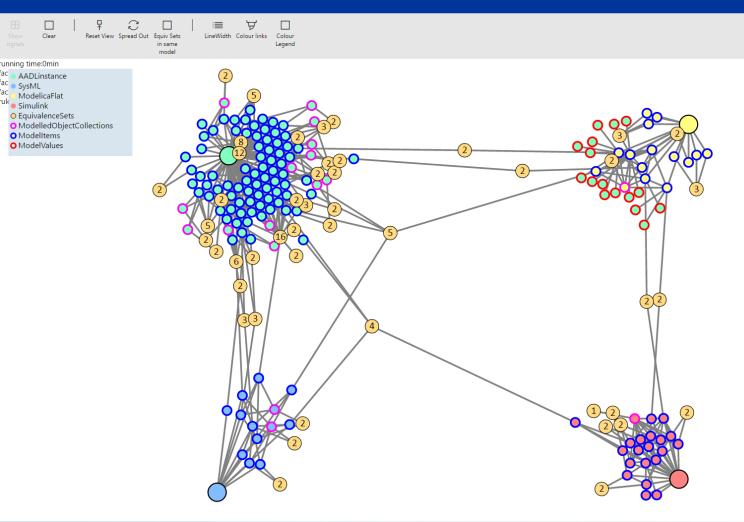
ModelValue

description: DescriptionString [0..1]

id : Identifier [1]

name: Name [1]

values : Value [1..*]


actors : Actor [0..*] dates : DateTime [0..*]

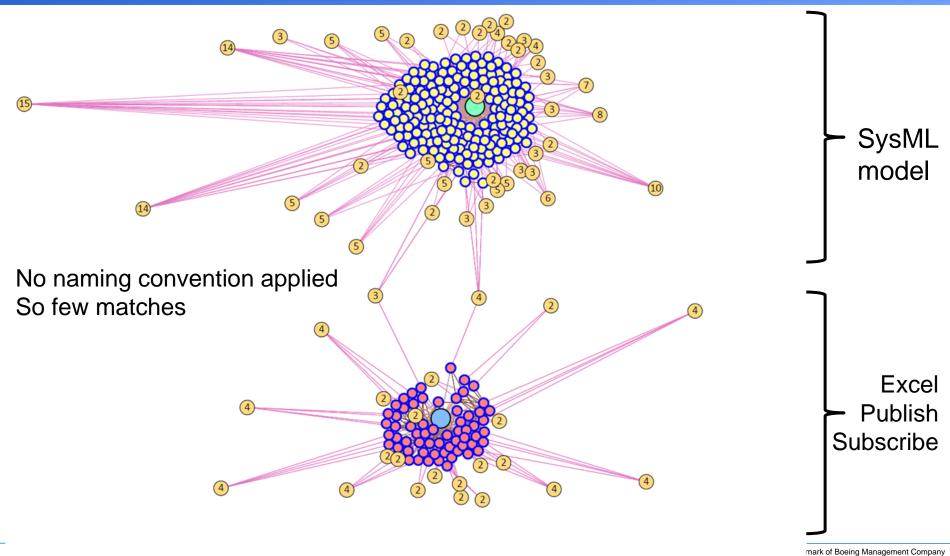
Global Product Data Interoperability Summit | 2017

The original test case models

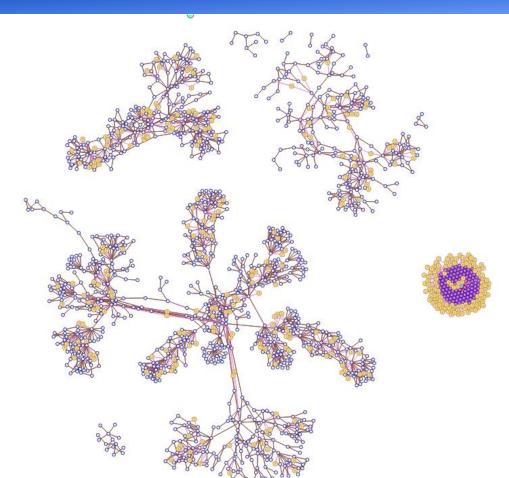
Views

Human interaction is required

ID	NAME	DESCRIPTION	FROM MODEL	Remove
.9.2+_PACHYDm8EeSp DzdHHjsQ+004_AADL_ Model1	Position Feed Back		FullSystem_impl_Instance	Х
3.3+_PACHYDm8EeSpCa zdHHjsQ+004_AADL_M odel1	PositionSensor		FullSystem_impl_Instance	Х
1.1.15+_PACHYDm8EeSp CaOzdHHjsQ+004_AADL_ Model1	Position Sensor	[object Object]	FullSystem_impl_Instance	Х
AID_F36A161D_F580_40 7_B6B1_6B2EB7ED7685+ APK_61A274C3_BF29_40 8_9DDB_6F54CF00CDAB +001_SysML_Model1	Position Sensor		EA_Model	Х
sliding block pid 1 - ill.mo+Modelica. Mechan cs. Translational. Sensors. P sition Sensor + position se sor 1_Modelica_File_Versi on 1	positionsensor1	[object Object]	slidingblockpid1-full.mo	Х



SAVI experience – Matching on Names for one system



SAVI experience – Matching on connections

Global Product Data Interoperability Summit | 2017

- SCADE
- Publisher Subscriber
- EquivalenceSets
- ModelledObjectCollections
- ModelItems
- ModelValues
- ModelItemAssociations
- DerivedFromModels

Same models as previous slide

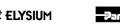
Looked for matching connections across models

None found!

Reason: differences in naming and modelling style

- SAVI work explored discovery and processing based on starting from just the models
 - Would expect to develop libraries of model checks and use thesauri and abbreviations to aid discovery
 - Use of standardised breakdowns in modelling would also help
- In practice the engineer will be reasonably well placed to check some aspects of consistency
 - Such as use of key values for properties
- However the scale of large products means there is value in aiding discovery
- Worth considering how MoSSEC might help
 - More on this later

Other experiences


Global Product Data Interoperability Summit | 2017

Has a consistently available format common across tools

LANGUAGE

- -XMI
- Eurostep has:
 - worked with SysML as a means to define models for standards and mappings between models
 - Using class diagrams and parametric diagrams
 - developed a major implementation of the PLCS standard for a customer
 - Automated software development
- Both of these are also forms of extraction in that the target is not the originating tool or similar
- Including SAVI work, 5 SysML tools has meant 5 different processing capabilities for data written in the same format

Conclusions concerning Extraction and Consistency

- Extraction can be done!
 - Both intellectual effort and cost can be substantial
 - Harder than it should be!!
 - Use of naming conventions and taxonomies would help
- Consistency checking needs extraction from more than one model if it is not to be human driven
 - Model of models approach is viable and will allow traceability into diverse model types
- Consistency is a property of a group of models
 - Need capability to handle model groups with joined up extracted data and derived elements

Community failure re XMI

- XMI is a good example of a standard that does not have an agreed way to use it
 - Others are ISO 10303-28 and RegIF
- Most vendors of UML/SysML tools use it to preserve system state
 - So their XMI can change with tool version as well as content
- INCOSE seems resigned to limited tool interoperability
- The answer was supposed to be Canonical XMI but it is poorly supported
- It has been seen as acceptable for vendors to offer to read each other's XMI to give some interoperability
 - This fails anyone trying to use the content in other ways

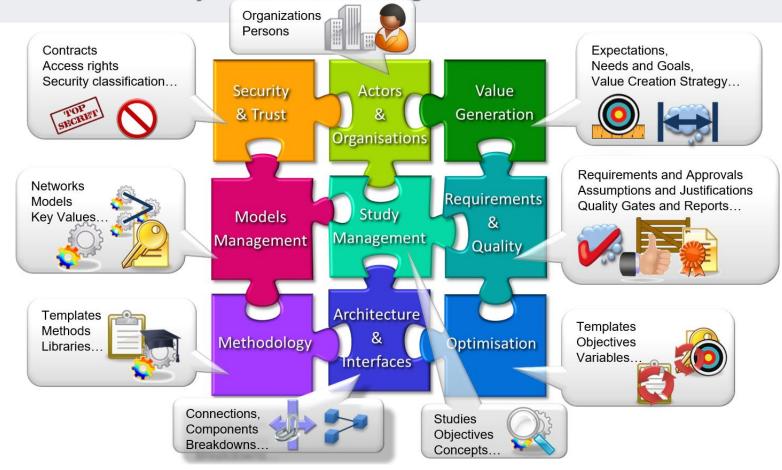
Extraction vs. openness vs. standards

- The SAVI work relied on different levels of standards to enable extraction of data from models
 - XML as a base syntax allowed XSLT to be used to extract
 - -SysML (XMI)
 - AADL (via export from OSATE)
 - STEP standards (ISO 10303) allowed extraction without having to read proprietary formats
 - -AP214 MCAD
 - -AP210 ECAD
- Domain specific languages (e.g. Modelica) present a challenge without available parsers or XML format

Follow-up

- One way to ensure consistency is to provide values as part of a simulation specification which is then "populated"
 - This is part of the design intent of the MoSSEC standard:
- Modelling and Simulation information in a collaborative **Systems Engineering Context**
 - New work item under ISO TC 184/SC 4
 - Originates from Airbus led EU research projects
 - Not Aerospace specific
 - Key problem: Enable an Aircraft Architect to know where a value came from and where has it been used
 - Capture Audit Trail of System Simulation across organizations and disciplines

- MoSSEC reuses a lot of PLCS/AP233 structures
 - Details of specific simulations could be handled using native, AP209 or even AP233
 - Working at Meta data level
 - Traceability from studies to models to results and more
 - Provision of key values and model data for analysis/simulation



MoSSEC scope

Global Product Data Interoperability Summit | 2017

MoSSEC Business Object Model coverage

Slide from Adrian Murton presentation to NAFEMS SDMWG, Jan 2017 – used with permission

Silos or Cylinders of Excellence?

Global Product Data Interoperability Summit | 2017

At first sight some of these silos appear to be the same

Global Product Data Interoperability Summit | 2017

The snag is you have to release the inner silos!

