

Smart Manufacturing @ NIST

Thomas Hedberg, Jr., P.E.
Systems Integration Division

MBSE and Evaluating a Data Interoperability Ecosystem Workshop September 18, 2017

Presentation Overview

What is NIST doing in Smart Manufacturing?

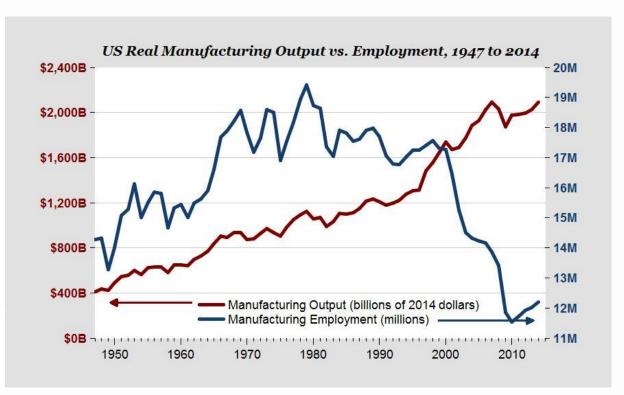
Role of NIST in Standards

• Interoperability: Standards and Practice

Engineering Laboratory Goals

• Disaster-Resilient Buildings, Infrastructure, and Communities

Cyber-Physical Systems


Smart Manufacturing

 Sustainable and Energy-Efficient Manufacturing, Materials, and Infrastructure

Context: U.S. Manufacturing

- \$2.1T in value added to the U.S. economy, highest multiplier effect of any economic sector
- 12.3 million manufacturing workers in the United States, accounting for 9 percent of the workforce
- In addition, manufacturing supports an estimated 18.5 million jobs in the United States—about one in six private-sector jobs
- Output per hour for all workers in the manufacturing sector has increased by more than 2.5 times since 1987
- Manufacturers in the U.S. perform more than three-quarters of all private-sector research and development (R&D) in the nation

www.aei.org based on BEA and BLS data

Smart Manufacturing: the synthesis of advanced manufacturing capabilities and digital technologies to produce highly customizable products faster, cheaper, better, and greener

- Internet of Things/Ubiquitous Sensing
- Big data & advanced analytics
- Cloud computing
- Broadband communications, wireless
- Mobile computing/apps

- Security technologies
- Advances in additive processes/3D printing
- Advances in robotics
- Model-based everything
- Cyber-physical systems engineering
- Advances in materials

Primary Objective of the Smart Manufacturing Goal

Drive innovation and reduce risks of adoption of Smart Manufacturing technologies through measurement science and standards:

- EL products include:
 - Performance metrics
 - Measurement, testing methods, and artifacts
 - Predictive modeling and simulation tools
 - Information and knowledge modeling
 - Protocols and specifications
 - Reference Technical data
- Collaborations with academia and industry
- Critical technical contributions to standards

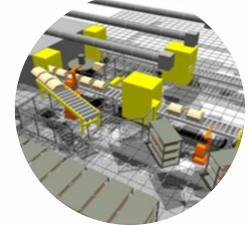
Common Themes in Advanced Manufacturing Trends Reports

Additive Manufacturing

Advanced Robotics

Smart Manufacturing Systems
 Design and Analysis

Smart Manufacturing Operations



Smart Manufacturing Measurement Science

Enabling DisruptiveProcess Technologies:

Additive Manufacturing

Enabling System Level Technologies:

System Design and Analysis

Operations Planning and Control

Sampling of Available Facilities

- 1. Industrial Control Systems Cybersecurity Test Bed
 - https://www.nist.gov/industry-impacts/nist-impacts-industrial-control-systems-cybersecurity
- 2. Industrial Wireless Systems Test Bed
 - https://www.nist.gov/laboratories/tools-instruments/nist-industrial-wireless-systems-testbed
- 3. Metal Additive Manufacturing (AM) Research Facility
 - https://www.nist.gov/laboratories/tools-instruments/metal-additive-manufacturing-am-research-facility
- 4. Manufacturing Robotics Test Bed
 - https://www.nist.gov/laboratories/tools-instruments/manufacturing-robotics-testbed
- 5. Smart Manufacturing Systems (SMS) Test Bed
 - https://www.nist.gov/laboratories/tools-instruments/smart-manufacturing-systems-sms-test-bed

Role of NIST

• Does not develop standards, instead provide expertise to standards

Work in collaboration with academia, industry, and SDOs

Support innovation and advancement of standards through basic and applied research

Interoperability in General

- NIST conducts research to support advancing interoperability
 - Intra-domain (e.g., CAD-to-CAD)
 - Inter-domain (e.g., CAD-to-CAM, MCAD-to-ECAD)

 NIST needs interoperability of tools and data / information to support our research goals

Interoperability in MBSE

Quick adoption of SysML 2.0 when published

Canonical XMI, it's a must!

Reference models and repositories

Questions?

