Model-Based Systems Engineering for Aerospace Manufacturing

Leon McGinnis, Georgia Tech George Thiers, ModGeno

Agenda

- 1) MBSE, Digital Thread, IIoT, Industrie 4.0
- 2) Information-Exchange Standards
- 3) Why Exchanging Information Is Not Enough
- 4) DELS, reference model
- 5) Current State of Development / Commercialization
- 6) INCOSE initiative: Call for Participation

Global Product Data Interoperability Summit | 2017

http://www.industryweek.com/systems-integration/demystifying-digital-thread-and-digital-twin-concepts?page=2

Global Product Data Interoperability Summit | 2017

A Continuum of Authoritative Digital Surrogate Representations Leveraged Over the Entire Life Cycle

Dr. Ed Kraft, Technical Adviser, Arnold Engineering Development Center

https://www.nist.gov/sites/default/files/documents/el/msid/1Kraft_DigitalThread.pdf

Global Product Data Interoperability Summit | 2017

A Continuum of Authoritative Digital Surrogate Representations Leveraged Over the Entire Life Cycle

Global Product Data Interoperability Summit | 2017

Production Decision Making

Planning

What production technologies? Who are the suppliers?
Where are they located? Supply Design

What do our factories produce?

How do we transport?

Operations Management

Accept a job? **Production** Which resources to assign? How to sequence task System Design When to change resources?

Chain

Where does job go next?

Behavior

G00 - Positioning at rapid speed; Mill and Lathe G01 - Linear interpolation (machining a straight line); Mill and Lathe G02 - Circular interpolati M00 - Program stop; Mill and Lathe G03 - Circular interpolati M01 - Optional program stop; Lathe and Mill G04 - Mill and Lathe, Dw M02 - Program end; Lathe and Mill G09 - Mill and Lathe, Exa

M03 - Spindle on clockwise; Lathe and Mill G10 - Satting offcate in th

M04 - Spindle on counterclockwise; Lathe and Mill M05 - Spindle off; Lathe and Mill

M06 - Toolchange; Mill

Part and assembly design

Global Product Data Interoperability Summit | 2017

A Continuum of Authoritative Digital Surrogate Representations

thread?

How can they be integrated into the digital

Information-Exchange Standards

Why Exchanging Information Is Not Enough

- New materials—composites
- New business models—strategic partners vs vendors
- Faster time to market
- Changing product requirements—P2P vs hub & spoke
- Changing production technologies—additive, smart, ...
- "Copy the past and tweak" is no longer a feasible production system or supply chain design/development strategy
- => We need to be able to specify and analyze the complete supply chain at levels of fidelity comparable to the specification and analysis of the product

Why Exchanging Information Is Not Enough

Global Product Data Interoperability Summit | 2017

http://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-july-2015.pdf?sfvrsn=0

- Research and development program of the Keck Virtual Factory Lab at Georgia Tech
 - Industry partners over the last 10 years include: Boeing, FedEx, GE, Lockheed, McKesson, Rockwell Collins, UTRC
 - Sponsorship from NIST
- Commercialization through ModGeno
 - NIST SBIR award

Global Product Data Interoperability Summit | 2017

Need to address:

- (Lack of) Common semantics & syntax for specifying production systems (reference model)
 - Difficulty of integration in PDM/PLM systems
- Time and expense of hand-coding analysis models (imagine if every FEA/CFD required a simulation engineer to hand-code the model)
 - Very limited decision support to production system engineers
- (Lack of) An engineering design methodology for production systems
 - Very difficult to capture/re-use learnings from experience—lots of tacit rather than explicit knowledge

Global Product Data Interoperability Summit | 2017

First, Identify the Domain

- Manufacturing systems are systems:
 - through which materials (product, tasks) flow
 - and are transformed by processes (make, move, store, measure)
 - executed using resources (people, equipment, inventory)
 - organized in some way (facility or network)
- Product/Process/Resource/Facility

Discrete Event Logistics Systems, or DELS

Global Product Data Interoperability Summit | 2017

A DELS model is actually a layered series of models:

- Network Abstraction (Structural)
 - Abstraction: Networks, Flow Networks, Process Networks
- System Behavior (Plant)
 - Abstraction: Product, Process, Resource, Facility + Task
- Control
 - Admission, Sequencing, Resource Assignment, Routing, & Resource State
- Domain-specific Reference Models
 - Production (Make), Warehousing (Store), Transportation (Move)
 - **Supply Chains, Healthcare Logistics, etc.**

DELS Modeling Framework

Global Product Data Interoperability Summit | 2017

Framework both for elaborating the reference model and for using it to model existing systems or to support future system design

DELS Network Abstraction

Global Product Data Interoperability Summit | 2017

Most abstract system representation, which enables and supports model-to-model transformation for large classes of systems

Global Product Data Interoperability Summit | 2017

Layer 2, *Discrete Event Logistics System* (abstract): Core semantics include *Product, Process, Resource, and Facility.*

What else? An important pattern is *plant / control separation*, common in product models but not so much in production system models.

(BOEING

BOEING is a trademark of Boeing Management Company Copyright © 2017 Boeing. All rights reserved.

GPDIS 2017.ppt | 22

DELS Behavior Taxonomies

Global Product Data Interoperability Summit | 2017

Most abstract resource models that capture most resource behavior patterns

Global Product Data Interoperability Summit | 2017 Level 4 Business Planning & Logistics Plant Production Scheduling, Time Frame Business Management, etc Level 3 Manufacturing **Operations Management** Dispatching Production, Detailed Production Time Frame Scheduling, Reliability Assurance, ... Level 2

Establishing the basic plant schedule production, material use, delivery, and shipping. Determining inventory levels.

Months, weeks, days, shifts

3 - Work flow / recipe control to produce the desired end products. Maintaining records and optimizing the production process.

Shifts, hours, minutes, seconds

Manufacturing Control

Basic Control, Supervisory Control, Process Sensing, Process Manipulation,...

- 2 Monitoring, supervisory control and automated control of the production process
- Sensing the production process, manipulating the production process

The physical production process

Level 0

Level '

Global Product Data Interoperability Summit | 2017

Functional mechanisms that manipulate flows of tasks and resources through a system in real-time, or near real-time.

Control formulation that captures what really happens in DELS control, and provides an organizing framework for all published "scheduling" theory.

- Which tasks get serviced? (Admission/Induction)
- When {sequence, time} does a task get serviced? (Sequencing/Scheduling)
- Which resource services a task? (Assignment/Scheduling)
- Where does a task go after service? (Routing)
- What is the state of a resource? (task/services can it service/provide)

Global Product Data Interoperability Summit | 2017

Layer 3, *Supply Chain* (more concrete)

Global Product Data Interoperability Summit | 2017

Layer 3, *Supply Chain* (more concrete)

BOEING is a trademark of Boeing Management Company

Ø BOEING

NORTHROP GRUMMAN

Global Product Data Interoperability Summit | 2017

Copyright © 2017 Boeing. All rights reserved.

GPDIS_2017.ppt | 30

Copyright © 2017 Northrop Grumman Corporation. All rights reserved.

Layer 3, **Production System** (more concrete)

ELYSIUM

Global Product Data Interoperability Summit | 2017

ModGeno is currently conducting an SBIR Phase 1 feasibility study, sponsored by NIST. We're starting with Value Stream Maps, a low-resolution model that many manufacturers already have, making them an ideal place to start.

https://www.nasa.gov/feature/nasa-aeronautics-budget-proposes-return-of-x-planes

Global Product Data Interoperability Summit | 2017

DEMO: Use a Virtual Manufacturing System to drive continuous improvement. Source (of the model and the process): Shook & Rother, <u>Learning to See</u>, 1998.

Global Product Data Interoperability Summit | 2017

Feasibility Study: Prove the technology as a plugin, inserted into the Visio platform. (Why? Because that's where the users are – there are many lean manufacturing engineers who will never use SysML and MagicDraw, but may use Value Stream Maps in a tool like Visio.)

Global Product Data Interoperability Summit | 2017

50,000-foot results view: Metrics guiding the continuous improvement process will be *Throughput, Inventory,* and *Production Lead Time*.

Global Product Data Interoperability Summit | 2017

Step 1: Change Work Release

Before: Release a day's worth of work every morning (920 jobs all-at-once)

Now: Release work according to Takt time (1 job every 60 seconds)

Global Product Data Interoperability Summit | 2017

Step 2: Produce to a finished-goods supermarket (= limit the inventory at Shipping)

Before: All push, with unlimited inventory at Shipping

Now: Starting introducing pull, using Kanbans

Global Product Data Interoperability Summit | 2017

Step 3: Introduce continuous flow

Before: Inventory accumulates between each Welding and Assembly process

Now: Consolidate four processes into one cell, and make process improvements to reduce C/T

Global Product Data Interoperability Summit | 2017

Q: What is the Value?

A: The value includes enabling communication, trust, estimating benefits to tradeoff against costs, and continuous improvement.

Global Product Data Interoperability Summit | 2017

SysML is present, but in the background. SysML is the vehicle for creating an actionable engineering discipline.

Material Layer, PUSH

Material Layer, PULL

Performance Layer

Information Layer

Kanbans

Opportunities to Engage

- INCOSE MBSE Initiative WG on DELS Modeling
 - Single community for modeling DELS
 - Investigate crossover with transportation and healthcare WGs
 - Connect to and engage with production system and logistics organizations
 - For every company that would like to see the benefits of MBSE in their manufacturing and supply chain organizations
- Keck Virtual Factory Lab
 - Concept development, analysis model development, M2M transformation
- ModGeno
 - Product development, program support

For more information

Global Product Data Interoperability Summit | 2017

leon.mcginnis@isye.gatech.edu timothy.sprock@nist.gov

conrad.bock@nist.gov

george.thiers@modgeno.com

