Better Defined Software Requirements with Model-based Systems

Engineering

Functional Safety Analysis and Control Tuning

BOEING

NORTHROP GRUMMAN

Aerospace

S ELYSIUM

Rachel Knutson – Senior Field Application Engineer

Global Product Data Interoperability Summit | 2018

Background

• 12 years control software design for DO-178B/C certified programs

Current assignments

 Consult a variety of clients on best practices for software architecture and verification strategies to satisfy DO-178C requirements using SCADE system and software solutions

22 ELVS

Project Scope

Global Product Data Interoperability Summit | 2018

- The Cabin Pressure Control System (CPCS) is an avionics system designed to minimize the rate of change of cabin pressure.
- The purpose of the CPCS is to ensure the safety of the airframe and passengers while maximizing comfort for aircrew and passengers during all phases of flight.

BOEING

ARP4754A, ARP476,1 DO-254, DO-178C Standards

Global Product Data Interoperability Summit | 2018

Z ELYSIU

System Safety and Engineering Processes in ARP4761 and ARP4754A

Global Product Data Interoperability Summit | 2018

Z ELYSI

GPDIS 2018.ppt | 5

DO-178C/DO-331 Model Usage Examples

Global Product Data Interoperability Summit | 2018

Process that generates the life-cycle data	MB Example 1	MB Example 2	MB Example 3	MB Example 4 (See Note 1)	MB Example 5 (See Note 1)
System Requirement and System Design Processes	Requirements allocated to software	Requirements from which the Model is developed	Requirements from which the Model is developed	Requirements from which the Model is developed	Requirements from which the Model is developed Design Model
Software Requirement and Software Design	Requirement from which the and Software Model is		Specification Model	Design Model	
Processes	Design Model	Design Model	Textual description (See Note 3)		
Software Coding Process	Source Code	Source Code	Source Code	Source Code	Source Code

Parker

BOEING

Objectives of the Approach

Global Product Data Interoperability Summit | 2018

- Take benefits from simulation at all levels:
 - System models for system analyses
 - Software models for software analyses
- Eliminate most of the low-level software verification activities
- Integrate the ARP4754A/ARP47161 and DO-178C/DO-331 modeling contexts for achieving the certification objectives in an efficient manner

2 ELYSIUM

BOEING

22 ELVS

Systems Requirements Definition

Global Product Data Interoperability Summit | 2018

- Systems Requirements were created in compliance to EARS (Easy Approach to Requirements Syntax) methodology.
 - The EARS methodology is an effective way of expressing requirements between five types (or patterns) to <u>avoid</u> defining poor requirements which can propagate to lower <u>levels.</u>
- System level requirements were defined for:
 - System Operating Modes
 - User Interface requirements
 - System Performance requirements
 - System Architecture requirements

BOEING

22 ELVSII

Requirements Examples from DOORS

Global Product Data Interoperability Summit | 2018

ID	Requirement	
CPCS-SYS-3	False	3 System Operating Requirements
CPCS-SYS-4	False	3.1 Normal Automatic Mode Requirements
CPCS-SYS-5	True	Test The Normal Automatic Mode shall be the active mode of the system upon system start-up.
CPCS-SYS-7	True	The Normal Automatic Control Mode shall be controlled by the IASC primary channel (Channel A).
CPCS-SYS-9		3.2 Manual Mode Requirements
CPCS-SYS-12	True	When the MANUAL ON command is sent from the Control Panel, the Manual Control Mode shall be active.
CPCS-SYS-13	True	Manual Control Mode shall be controlled by the IASC back up channel (Channel B).
CPCS-SYS-14	True	While the Manual Control Mode is active, the IASC primary channel (Channel A) shall be inoperative for control commands.
CPCS-SYS-15	True	While the Manual Control Mode is active, the IASC primary channel (Channel A) shall be active for data monitoring.
CPCS-SYS-16	True	While in Manual Control Mode, the system shall allow manual control of the cabin altitude rate of change.

BOEING

Architecture Definition

Global Product Data Interoperability Summit | 2018

Allocation of Functions to Software and Platform Components

Software Architecture (ARINC 429)

Software Architecture (ARINC 664-P7 / AFDX)

Platform (ARINC 429 and ARINC 664-P7 / AFDX)

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 10

Z ELYSIU

Architecture Definition

Global Product Data Interoperability Summit | 2018

From system requirements to architecture and operational representation

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 11

-2

2 ELYSIUM

NORTHROP GRUMMAN

BOEING

Z ELYSIU

Functional Decomposition of Operational Requirements

Global Product Data Interoperability Summit | 2018

NORTHROP GRUMMAN

BOEING

ULINU

GLOBAL PRODUCT DATA

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 12

Architecture Definition (Initial)

Global Product Data Interoperability Summit | 2018

AL PRODUCT DATA

51 71

NORTHROP GRUMMAN

BOEING

≓ ELYSIUN

Architecture Definition

Global Product Data Interoperability Summit | 2018

Software Architecture Perspective – ICD Generation

- A429MessageDefinitionTable
- 🛚 🚽 AFDXLabels
- 🛚 😽 GenericSWMessageDefn

		А	В	С	D	E	F	G	Н	I	J
		LabelID	Field Type	Position	Size	Bit29mean0	Bit29mean1	Encoding	EquipmentID	SDIRole	SSMatrixLength
1	□	203				positive sign	negative sign	BNR = 1	260	data = 0	2
2	□ MessageFields										
3	R ALTITUDE		real	11	18						
4	□ ■ A429_CABINPRESSURE	152				positive sign	negative sign	BCD = 0	98	data = 0	0
5	□ MessageFields										
6	R CABINPRESSURE		real	11	18						
7	□ ■ A429_TEMPERATURE	187				positive sign	negative sign	BCD = 0	88	data = 0	0
8	□ MessageFields										
9	R TEMPERATURE		real	4	18						
10	□ ■ A429_SET_TEMPERATURE	187				positive sign	negative sign	BCD = 0	88	data = 0	0
11	⊡ MessageFields										
12	R TEMPERATURE		real	4	18						

Z ELYSIU

Architecture and Safety Workflow (Iterations)

Global Product Data Interoperability Summit | 2018

Functional Safety Analysis with medini

Global Product Data Interoperability Summit | 2018

- medini provides an integrated model-based approach to functional safety of aerospace systems
- **Development and safety** assessment according to ARP4754A and ARP4761 are supported
- Major safety analysis methods • are provided: FHA, FTA, FMEA, FMES, CCA
- Reliability prediction and quantitative analysis are supported

Checklist

[IPS-1-03]

Annunciated loss of

cabin pressure

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 16

Major

[SO_01] The

be available.

EICAS has to

C

oxygen flow and pressure

Significant increase on crew

inside cabin decreases.

workload

A BOEING

ID

IPS-1-02

IPS-1-04

Function

and air

[F001] Provide

NOT

Take off

In Flight

cabin pressure

and air

exchange

Safety Analysis

Global Product Data Interoperability Summit | 2018

BOEING

Z ELYSIU

NORTHROP GRUMMAN

2 ELYSIUM

- The Architecture model from SCADE Architect is imported into medini for safety analysis
- The safety analysis follows the ARP4754A phases/activities
- It is done iteratively and integrated with the system development

Functional Safety Analysis

Global Product Data Interoperability Summit | 2018

EROPERABILITY

BOEING

Z ELYSIUN

NORTHROP GRUMMAN

2 ELYSIUM

Functional Safety Analysis – System Architecture Update

Global Product Data Interoperability Summit | 2018

NORTHROP GRUMMAN

BOEING

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 19

Control Laws Design

Global Product Data Interoperability Summit | 2018

Objectives

- Define requirements allocated to Software: DO-331
- Workflow
 - Model the Physical System
 - Generate a Reduced Order Model of the Physical System
 - Construct the System Model with Twin Builder
 - Extract State Space Equations to design the Controller (Linearization)

22 ELVSII

- Validate & Optimize Controller requirements within the system model
- Allocate system requirements to Software

BOEING

Model the Physical System

Global Product Data Interoperability Summit | 2018

- ANSYS Fluent captures the 3D air flow within a MD-82 cabin
- Virtual sensors distributed spatially in the cabin are used to monitor temperature and pressure

BOEING

- CFD analysis is generated for the entire cabin
 - computation time = several days

2 ELYSIUM

Generate Reduced Order Model

Global Product Data Interoperability Summit | 2018

- 3D models are extremely precise but require large CPU time
- ANSYS unique technology (deep learning) enables the creation of a Reduced Order Model for transient non-linear 3D models
- Resulting Performance improvement:
 - Fluent 40 hours on 48 CPU
 - ROM 4 seconds on 1 CPU

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 22

2 ELYSIUM

BOEING

zł ELYSI

Construct a High-Fidelity System Model with Twin Builder

Global Product Data Interoperability Summit | 2018

- ANSYS Twin Builder models the system components (actuators, sensors, etc.) with the ROM for a complete system simulation
- This enables optimization and validation of component choices with the system response

BOEING

Z ELYSI

Extract State Space Equations to Design the Controller

Global Product Data Interoperability Summit | 2018

 Twin Builder can automatically extract a continuous linear State-Space model from any arbitrarily complex system model

Perform Initial Controller Tuning

Global Product Data Interoperability Summit | 2018

- A Control Toolbox is used for the basic control law design
 - Analyze properties of the linear system identified in the previous step
 - Design and tune the controller
 - Select the form of the controller based on properties of the system
 - Discretize the controller
 - Determine initial parameters values for the controller

BOEING

EING

2 FLYS

Validate Controller Requirements within the System Model

Global Product Data Interoperability Summit | 2018

- Integrate the controller in the high fidelity system model
- Twin Builder enables parametric analysis
 - On the basis of the controller definition designed from the state space • equation, perform a sweep on specific controller parameters with closedloop physics simulation
 - Select parameters for best performances
 - Check robustness to mission profiles and/or system changes

System responses to a range of controller coefficients

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS 2018.ppt | 26

2 ELYSIUM

A BOEING

Allocate System Requirements to SW

Global Product Data Interoperability Summit | 2018

The System Modeling workflow converts our initial performance requirements into requirements for the software controller

5 Performance Requirements

While in Normal_Operational_Mode, the cabin pressure system shall regulate the cabin pressure to maintain a cabin_pressure_level within 0.2% of the cabin_pressure_target_set point.

While in Normal_Operational_mode, when a 100Hpa change of the cabin_pressure_target_set_point is requested, the cabin pressure system shall regulate the cabin pressure, to achieve a cabin_pressure_level within 0.2% of cabin_pressure_target_set_point within 20 seconds.

While in Normal_Operational_Mode, the cabin pressure shall monitor the cabin_pressure_command_panel, and set the cabin_pressure_target_set_point to reflect the hardware_seleced value with 0.1 seconds.

While in Normal_Operational_Mode, the cabin_environmental_control_system shall regulate the cabin temperate to maintain a cabin_temperature_level within 0.3° of the cabin_temperature_target_set point.

While in Normal_Operational_mode, when a 3°C change of the cabin_temperature_target_set_point is requested, the cabin pressure system shall regulate the cabin temperature, to achieve a cabin_temperature_ level within 0.3° of cabin_temperatire _target_set_point within 20 seconds.

CPCS-SW-18 While the CPCS operating mode is 'AUTO_NORMAL', the OFV Speed Command shall be calculated using the PID controller using the following parameters: Kp = -0.006 (s*ft)^-1 Ki = -0.02 (s^2 * ft)^-1 Kd = 0.0 (ft)^-1 dT = 100 ms loLimit = OFV_NORMAL_SPEED_CMD deg/s

🛱 ELYSIUM

2 FLYS

Definition of Software High Level Requirements (HLRs)

Global Product Data Interoperability Summit | 2018

HLRs were created in compliance to EARS (Easy Approach to Requirements Syntax) methodology.

• Example Software HLRs:

CPCS-SW-3	1.2 Pressure Controller	
CPCS-SW-9	The Pressure Controller shall use the following constants when determining the targeted cabin altitude: ALT1: 20,000 ft CAB_ALT1: 4,000 ft OFV_DITCHING_SPEED_CMD: -20 deg/s OVF_EMERGENCY_SPEED_CMD: 25 deg/s OFV_NORMAL_SPEED_CMD: 10 deg/s	
CPCS-SW-18	While the CPCS operating mode is 'AUTO_NORMAL', the OFV Speed Command shall be calculated using the PID controller using the following parameters: $Kp = -0.006 (s*ft)^{-1}$ $Ki = -0.02 (s^2 * ft)^{-1}$ $Kd = 0.0 (ft)^{-1}$ dT = 100 ms $IoLimit = OFV_NORMAL_SPEED_CMD deg/s$	•
CPCS-SW-19	While the CPCS operating mode is 'MANUAL', the OFV Speed Command shall be calculated using the PID controller using the following parameters: Kp = -0.006 (s*ft)^-1 Ki = -0.02 (s^2 * ft)^-1 Kd = 0.0 (ft)^-1 dT = 100 ms loLimit = OFV_NORMAL_SPEED_CMD deg/s highLimit = - OFV_NORMAL_SPEED_CMD deg/s	

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 28

🛱 ELYSIUM

BOEING

Z ELYSIU

Implementation of HLR

Global Product Data Interoperability Summit | 2018

Our Example requirement has two parts:

Part 1: Mode constraint

While the CPCS operating mode is 'AUTO_NORMAL'..."

Part 2: Directive for the output

"...the OFV Speed Command shall be calculated using the PID controller..."

Software Verification: Example HLR

Global Product Data Interoperability Summit | 2018

Z ELYSIUN

Software Verification Summary

Global Product Data Interoperability Summit | 2018

Model-Based Testing on Host

- 100% conformance testing achieved
- 100% model coverage achieved

2. Coverage Information

2.1. Overview

Coverage percentage of the project: 100.00 %

2.2. Covered Operators

Entity Path	Coverage
IASC::IASC/	8/8
IASC::ModeController/	8/8
IASC::PC_Cabin_GetTargetCabAlt/	4/4
IASC::PC_OFV_Automatic/	4/4
IASC::PC_OFV_SpeedCommand/	17/17
IASC::PressureController/	12/12

NORTHROP GRUMMAN

BOEING

Z ELYSIU

Qualified/Certified Code Generation

Global Product Data Interoperability Summit | 2018

SCADE Suite KCG is developed according to DO-178C/DO-330 TQL-1 objectives

Complete traceability from model to code

- C Code Generation
- Ada Code Generation

Z ELYSIU

<pre>#ifndef _BSearch_P_int8_10_4_H_ #define _BSearch_P_int8_10_4_H_</pre>	
<pre>#include "kcg_types.h"</pre>	
<pre>/* P::BSearch/ */ extern void BSearch_P_int8_10_4(/* search/ */ kcg_int8 search_int8_10_4, /* values/ */ array_int8_10 *values_int8_10_4, /* IfBlock1:, _L1/, out_of_range/ * kcg_bool *out_of_range_int8_10_4, /* idz/ */ ind_t_P *idx_int8_10_4);</pre>	
#endif /* _BSearch_P_int8_10_4_H_ */	

Standard ANSI C code

SPARK 95 Ada code

NORTHROP GRUMMAN

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 32

Use the System Model as a Twin

Global Product Data Interoperability Summit | 2018

NORTHROP GRUMMAN

BOEING

AL PRODUCT DATA 🤈

BOEING is a trademark of Boeing Management Company Copyright © 2018 Boeing. All rights reserved. Copyright © 2018 Northrop Grumman Corporation. All rights reserved. GPDIS_2018.ppt | 33