Additive Manufacturing **Challenges With** Parts That Fly In **Space: Demo!**

Zach Etier Blaine Baker 9/18/2018

Background Information

Global Product Data Interoperability Summit | 2018

Zach Etier - Mechanical Engineer

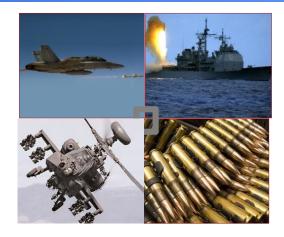
Education

- B.S. Aerospace Engineering
- B.S. Mechanical Engineering
- Minor in Computer Science Experience
- Lead AM for NGC:IS, Chandler
 - FDM
- 4 Years in Aerospace Industry

Blaine Baker - Mechanical Engineer

Education

- B.S. Mechanical Engineering Experience
- Design for Additive Manufacturing
 - R&D, Tooling
- 6 Years in Aerospace Industry



Northrop Grumman Innovation Systems (NGIS) Summary

Global Product Data Interoperability Summit | 2018

\$5B in Revenue 13,000 Employees 3 Operating Groups in 20 States

Flight Systems Group

2017 Revenue ~\$1.7 Billion

Workforce ~5,500 People

3 Divisions Launch Vehicles Propulsion Systems Aerospace Structures

Defense Systems Group

2017 Revenue ~\$1.9 Billion

Workforce ~4,800 People

4 Divisions
Missile Products
Armament Systems
Defense Electronics
Small Caliber Systems

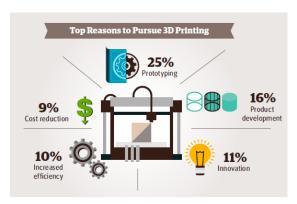
Space Systems Group

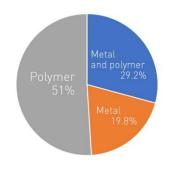
2017 Revenue ~\$1.3 Billion

Workforce ~3,000 People

4 Divisions

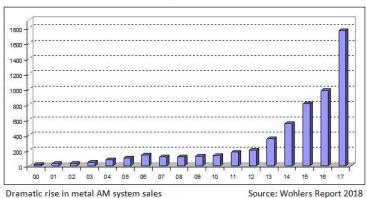
Satellite Systems
Advanced Programs
Space Components
Technical Services

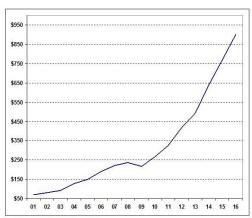




Current State of Additive Manufacturing

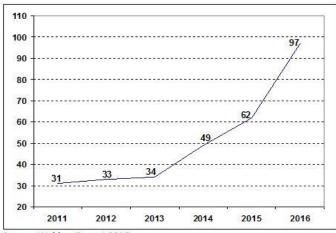
- Only ~34% of US based manufacturing executives have implemented AM
 (Boston Consulting Group)
- UPS reported that AM parts only represent 0.04% of the global market




Current State of Additive Manufacturing

Global Product Data Interoperability Summit | 2018

AM Systems Sold

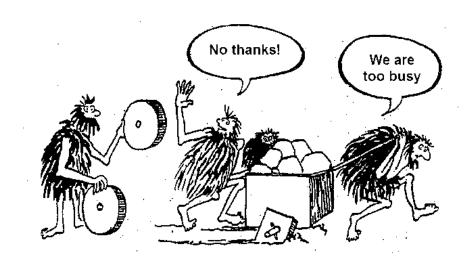


AM Material Sales

Source: Wohlers Report 2017

Total number of AM Manufactures

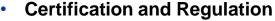
Source: Wohlers Report 2017



AM Challenges

AM Challenges

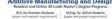
- According to Forbes Technology Council top reasons for slow adoption
 - Financial
 - Initial Capital investment
 - Certification and Regulation
 - Consistent quality and reliability
 - Customization and individualization
 - Repeatability
 - Machine settings
 - Variability between similar machines
 - Skills Gap
 - Obtaining qualified workforce
 - **Designing for AM**
 - Engineers understanding of the AM capability is lagging
 - Restrictive design designing to the limitations of the machine (min feature size, overhang, supports, machine or process specific limitations)
 - Opportunistic design designing to take advantage of AM (free design complexity, eliminate unneeded material, combination of parts, topology optimization)
 - Lack of integrated software packages
 - Production Volume / Part Size limitation



Overcoming the Challenges

- **Financial**
 - Pilot programs to measure ROI
 - Participate in beta testing
 - Use service bureaus to develop a business case

- New standards from ISO and ASTM to be released soon.
- Develop in house certification programs
- Repeatability
 - Configuration management of AM machine files (stl, cmb, STEP, etc)
 - Routine material testing and inspection comparison to a qualified part
 - ATP each part

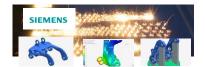


Overcoming the Challenges

- Skills Gap
 - Master's degree programs being offered
 - Many engineering schools are beginning to offer AM course work
- **Designing for AM**
 - Engineers understanding of the AM capability is lagging
 - Lack of integrated software packages
 - Integrated software packages are maturing
- Production Volume / Part Size limitation
 - AM manufactures are addressing production volume

NGIS– Additive Manufacturing

Global Product Data Interoperability Summit | 2018


- Northrop Grumman Innovation Systems

 Launch Vehicle Division AM involvement
 - Polymer AM flight parts flown on Antares vehicles since 2013 and have since flown on several other vehicles

- Participated on alpha, beta, and early bird programs with Stratasys in developing new materials
- Involved in internal and external user groups
 - Monthly internal AM meetings with the CTO
 - Siemens NX 11.2 AM Module team members

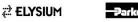
- University research and senior capstone projects
 - Two AM Capstone project funded in 2017
 - Currently funding university research to improve FDM Isotropy values

 Presented at 2017 AM seminars such as AMUG, SAMPE, Science in the Age of Experience, and CAMX

NGIS– Additive Manufacturing

- Participated in hands on workshops at Penn State
 - Employee enrolled in the new AM Masters Program

- Very active with STEM events, both local and national
 - Chandler Science Spectacular, Chandler AZ
 - NASA Day in the Park, Huntsville AL

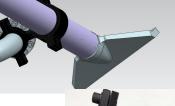


- Current member of the AZ Tech Council and local manufacturing groups
 - Member of the Research Collaboration and AM Workforce **Subcommittees**

AM Embraced throughout the Division

Global Product Data Interoperability Summit | 2018

From tooling to flight hardware, LVD produces thousand of parts each year

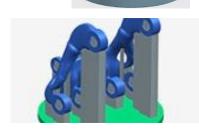


AM Education (Cont)

- **AM Masters Program at Penn State University**
 - Five core areas of emphasis: Design, Science, Materials, Process, Hands-on Lab
 - Engineers can participate in future design manual updates and department training

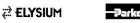
Core Courses (19 credits)				
Title	Abbreviation	Description	Credits	
Design for Additive Manufacturing	EDSGN 562	Explore design methods and tools for additive manufacturing, including opportunistic and restrictive aspects of different additive manufacturing processes and their related industry applications	4 credits	
Scientific and Engineering Foundations of Additive Manufacturing	E SC 545	Explores processes with a focus on the fundamentals of sintering and fusion of metals, ceramics, and polymers	4 credits	
Additive Manufacturing Processes	IE 527	Comprehensive study of the fundamentals, process characteristics, economics, and practical applications of various additive manufacturing processes	4 credits	
Additive Manufacturing of Metallic Materials	MatSE 567	Expose students to the state of the art in understanding processing, structure, and property relationships in materials fabricated using additive manufacturing	4 credits	
Metal Additive Manufacturing Lab	ME 566	Gain hands-on experience to all aspects of metal additive manufacturing including design, prototyping, build preparation, fabrication, post-processing, machining, inspection, and characterization.	3 credits	

Culminating Project and Research (3 credits)		
Description	Credits	
A paper must be completed to meet the specific requirement of the culminating experience. Completion of (3) credit hours in one of the following offerings: EDSGN 596, E SC 596, IE 596, MATSE 596, and ME 596, leading to a final paper, which demonstrates student's depth of knowledge in the field of additive manufacturing and design.	3 credits	



AM Software Evaluation

- NGIS Launch Vehicle Division is currently testing the new AM tools in Siemens NX 11
 - These new tools include topology optimization, multiple lattice geometries, convergent modeling, and 3D printer interfaces
 - Topology optimization allows us to input our loads and volume constraints and the software places material only where needed.
 - Lattice structures geometries are now available in several geometric types and are customizable
 - Convergent modeling allows us to use facet, surface and solid geometry in one environment. Ex: importing scanned data or stl files directly into our model
 - 3D Printer interfaces such as support structure generation, overhang angle checks, and other validation checks prior to committing to a build

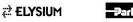


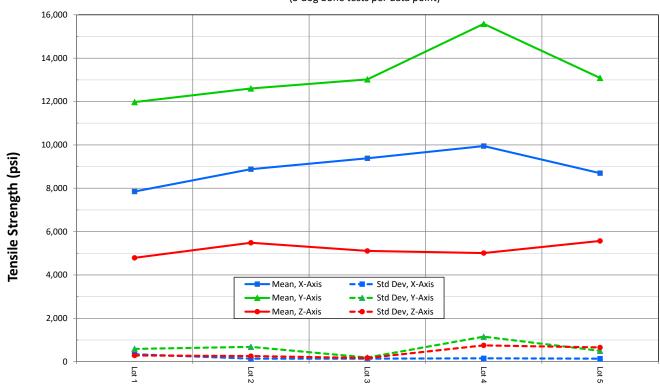
Manufacturing Applications for Nylon12CF

- Nylon12CF was introduced in late 2015 as a beta program with Stratasys
 - Entered into production parts by mid 2016
- What we like about Nylon12CF
 - High tensile Strength is 8-15 ksi depending on X-Y orientation
 - High stiffness
 - ESD safe properties
- What we don't like about Nylon12CF
 - Typical z-axis knockdown for FDM part, ~5 ksi in Z-axis
 - Surface finish using the T20 tip requires additional touch time
 - Tumbler would be a good solution
 - Better internal training on the Insight software for seam control

Fortus 450 Beta Testing

- Printed 12,000 in³ of Nylon12CF
 - 2,200 parts built to date
- Tensile Strength is 8-15 ksi depending on X-Y orientation
 - ~5 ksi in Z-axis
- Conductivity testing completed per ANSI/ESD STM11.11-2006 standards
 - The static dissipative range must be between 1x10⁵ to 1x10¹² ohms/square for ESD safe classification
 - Results were 2.63 x 10⁵ ohms/square




Fortus 450 Beta Testing

Global Product Data Interoperability Summit | 2018

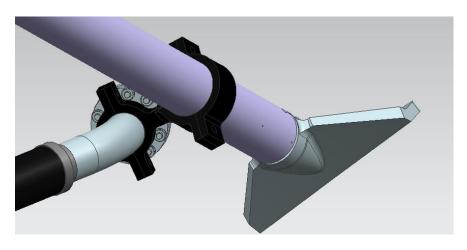
- Tensile Strength is 8-15 ksi depending on X-Y orientation
 - ~5 ksi in Z-axis, typical FDM z-axis knockdown

Nylon 12CF Tensile Test

(5 dog bone tests per data point)

Hose Clamps

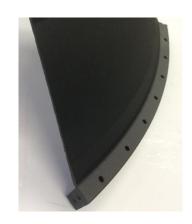
- Part is used to clamp rubber tube dispensing nitroglycerin
- These clamps replace the old ball valve design
 - Ball valves are easily contaminated and have to be replaced often
- After two design iterations, the tool was functioning as required


Support Clamps

Global Product Data Interoperability Summit | 2018

Used during shipping for support the LOX Feed lines to the thrust frame

Simple low cost solution




Payload Cone Panels

Pressure Vessel

- Mock up tank needed to assist in designing a protective blanket
 - Actual tank was not available in a timely manner
 - 3D printed part allowed Engineering to continue with integration activities

S-Band RF XTMR & FTS RCVR Antenna HATS

Global Product Data Interoperability Summit | 2018

These antenna hat were all fabricated in-house using Nylon12CF material

- The carbon fibers absorb RF energy
- The aluminum tape is used on the exterior to shield RF energy
- Eliminates having to coat the interior surface with nickel based material called Wave-X

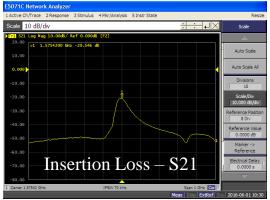
S-Band XMTR Hat 2361.5 / 2383.5 MHz

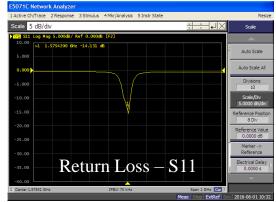
FTS RCVR Hat (421 – 428) MHz

Smith Chart showing a perfect match at S-Band

Captures both Magnitude and Phase of HAT RF impedance (50 Ohms goal)

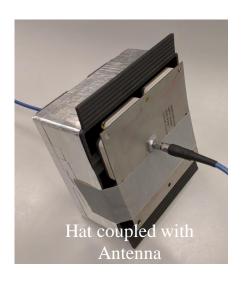


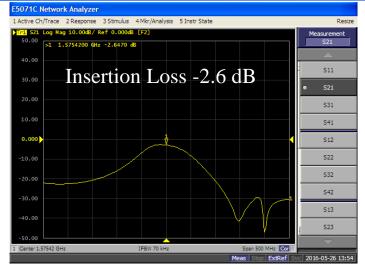


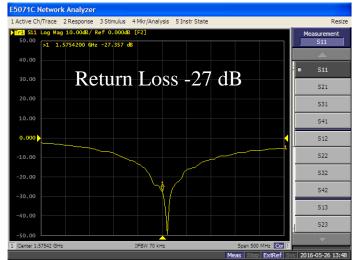

GPS RF Antenna HATS

 $P_0/P_1 = S21$ Transmission

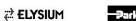
 $P_{reflect}/P_{incident} = S11$ Reflection







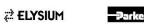
GPS RF Antenna HATS



Avionics Module

- Mockup housing created in Nylon12CF material used for its ESD safe properties
- Prototype board fit perfectly

Brackets

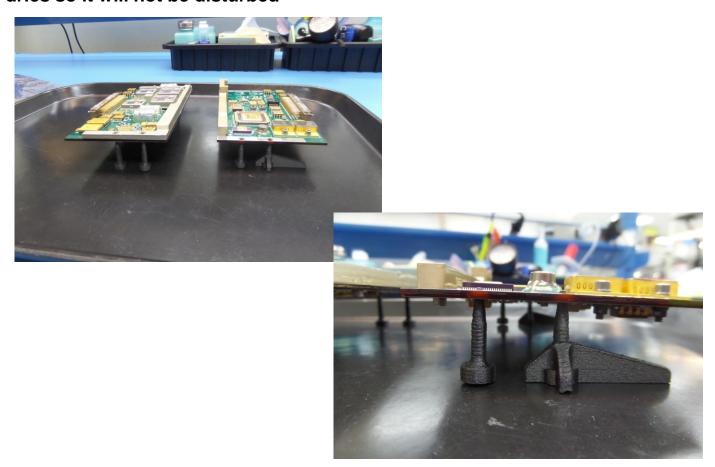


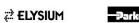
Manufacturing Tools

- Tool in use was difficult to use
- Assemblers modified the tool with Moxi tape
- New 3D printed tool ergonomically designed to fit the hand
- Well received by the assemblers

Manufacturing Tools

- When the lacing cord is tied by hand the cord cuts into your fingers. Many assemblers have calluses and even cuts to their fingers from the cord
- Many of them wrap fiberglass tape around their pinky fingers to prevent being cut. Imagine tying a 100 ft ground support cable every 10"
- This process is very hard on your hands. Also, we have had failed inspections because the lacing is too loose
- The new tool allows you to wrap the cord around the tool instead of your fingers. You can get tighter lacing using the tool and there is a lot less stress on your hands

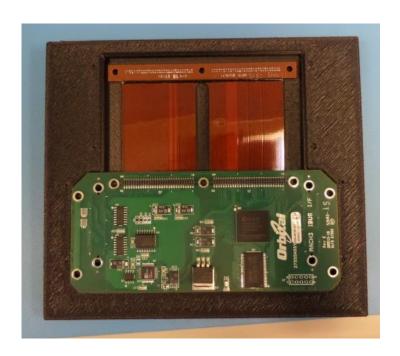


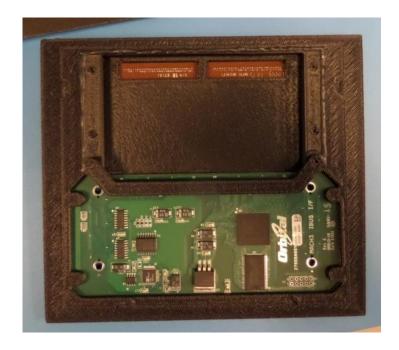


Manufacturing Tools

Global Product Data Interoperability Summit | 2018

Nylon12CF standoffs used to hold the PWA off the tray while the Conformal Coat dries so it will not be disturbed






Conformal Coating Tools

Global Product Data Interoperability Summit | 2018

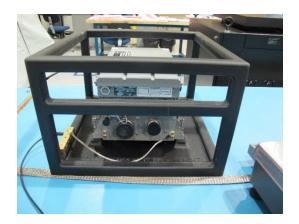
Creating 3D printing tools to streamline the conformal coating process

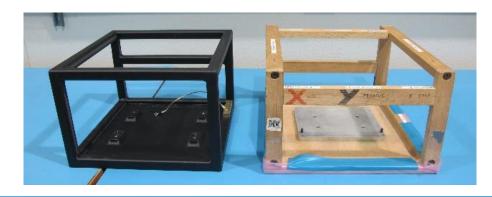
Composite Structure Layup Tools

- 3D printed layup tools have been used on several projects
 - The layup tool is printed from material that can withstand cure temperatures of 350° F
 - Pre-preg carbon fiber is placed on the layup tool and then cured, resulting in the molded part
 - > The cone below was made for a NASA research project and went from design to completed part within two weeks' time
 - > Four larger cones have been built on printed tooling, 2 have flown to date
 - Largest composite structure built using a printed tool was an anisogrid cylinder 5 ft. tall and 5 ft. in diameter. That structure flew on a mission a year ago October

Layup Tool

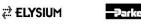
Finished Part





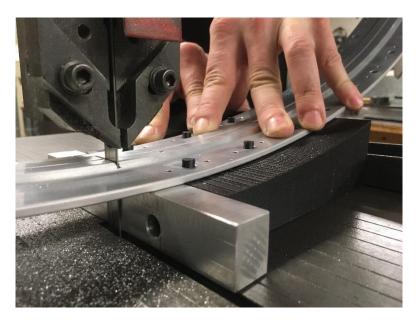
Inertial Navigation Phasing Fixture

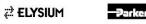
- 3D printed phasing fixture
 - **Desired ESD safe material**
 - Lighter than the old fixture, easier to maneuver
 - Old fixture was wearing out, made from wood



Cable Potting Fixture

- 3D printed potting fixture made from Nylon12CF
 - The operators in the conformal coat room have no tool to properly arrange the connector for potting operations
 - The current operation of dangling the cable over the edge of a box or shelf to align the cables is prone to disturbances during the curing process
 - The new tool ensures proper curing in the desired orientation while protecting the connector



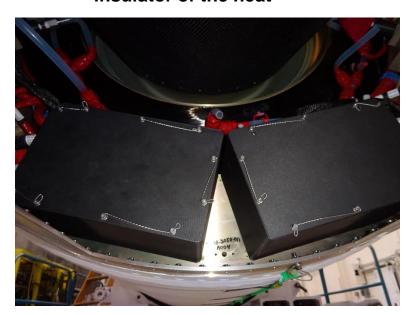


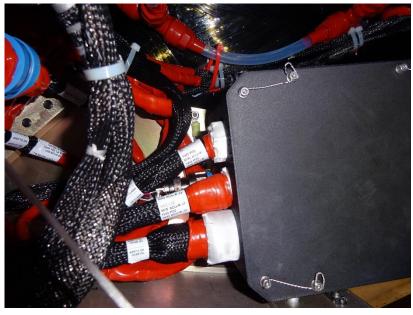
Cut Tool

- 3D printed fixture locates the rolled forging for precise cut and proper section length
 - Tool provided a secure base for cutting operation

Sub Orbital Vehicles

- The pitot tube brackets were designed for the module assembly of the vehicle to be used during cold gas thruster functional testing
 - 3D printed brackets were attached over the pitch/yaw thruster nozzle and the roll thruster nozzles
 - These brackets allowed a pitot tube to be placed in-line with the flow of the thrusters to measure pressure data with a quicker response time than other methods.



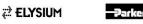


Orbital Vehicles

- **Actuator Control Unit (ACU) Enclosure**
 - Nylon12CF boxes enclose the ACUs for thermal conditioning
 - Heater strips are placed on the ACU. The Nylon12CF box is a decent insulator of the heat

Conclusion

- Although 3D printed parts pose a challenge for most organizations that deal with government agencies, the cost and schedule savings far outweigh the negatives
- High probability that you will soon be using the technology in ways you never imagined
- Get involved in Users Groups to help mature the technology
- **Create Maker Groups within the organization**



Demo and Q/A

Global Product Data Interoperability Summit | 2018

THE VALUE OF PERFORMANCE.

