Extending the Digital Thread Into Additive Manufacturing

Ian Boulton
Director, Aerospace and
Defense Business
Transformation - PTC

Introduction

Global Product Data Interoperability Summit | 2018

- Agenda
- Impact of Additive Manufacturing on A&D Supply Chain
- Considerations on when to use additive vs traditional
- **Key CAD features that are driven by AM**
- Where AM belongs in the digital thread/product lifecycle
- Additive Manufacturing in a 'day in the life' of a typical program
- Q&A

Impact of AM in the global A&D supply chain

Global Product Data Interoperability Summit | 2018

AM attributes compared to traditional manufacturing	Impact on product offerings	Impact on supply chains
Manufacturing of complex-design products		•
New products that break existing design and manufacturing limitations		•
Customization to customer requirements		•
Ease and flexibility of design iteration		
Parts simplification/sub-parts reduction		
Reduced time to market		
Waste minimization		
Weight reduction		
Production near/at point of use		
On-demand manufacturing		

Potential impact	Very high	High	Medium	Low
		•		

Source: Deloitte analysis.

Graphic: Deloitte University Press | DUPress.com

When does additive make sense?

Global Product Data Interoperability Summit | 2018

Reasons to use additive over traditional...

- Cost Low rate production may be cheaper than a traditional sourcing contract
- Cost It may be cheaper to print a part than to conduct traditional provisioning, kitting, warehousing, shipping etc...
- Obsolescence You may not be able to obtain the part
- Speed You need it quickly in a certain location (AOG etc)
- Performance It fulfils a specific requirement in a superior way – Weight, Strength, Material...

Proof points

Global Product Data Interoperability Summit | 2018

Why Use Additive Manufacturing?

Current State of the Art

- Significant improvement in design and manufacturing capabilities
 - Faster process to design and build parts
 - Digital assembly: Reduce part count and entire manufacturing cycle
 - Eliminate tooling

Demonstrated Efficiencies on NGC Programs

Aircraft Bracket

High temperature polymer compared to traditional aluminum

- Cost reduced 37% savings
- Lead time reduced 78%
- Weight reduced 40%

Warm Air Mixer

Compared to vendor quotes for functional components

- Part cost reduced 31% to 35%
- Lead time reduced 80% to 90%
- First AM built metal part to fly on DoD aircraft

Composite Tooling

Compared to traditional prototype tooling

- Cost reduced 78% savings
- Lead time reduced 70% reduction

Software Test Panels

Compared to previous acquisition process

- Cost reduced 96% reduction
- Lead time reduced 99% savings

CAD Features driven by AM requirements

Global Product Data Interoperability Summit | 2018

Lattice Creation

Topology Optimization

Printer Support

 Manufacturing **Processes**

Demonstration - AM in the context of a typical program...

Global Product Data Interoperability Summit | 2018

Summary

Global Product Data Interoperability Summit | 2018

- Additive Manufacturing (AM) is disruptive technology and growing rapidly
- AM can add unique capabilities to a program by inserting the ability to 'print your own' parts to solve specific challenges
 - Obsolescence
 - Time, Logistics Delay
 - Performance (Weight, Strength etc.)
 - Cost in the supply chain (warehousing, kitting, provisioning, transportation)
- The decision to use AM must be driven by business requirements and CBA – what waste are you eliminating with AM?
- Companies that embrace MBE and have a digital thread strategy will find it easier to integrate AM into their supply chain

Thank you

Global Product Data Interoperability Summit | 2018

Questions?

