The Digital Thread Beyond (Product Engineering) and Back

New Program Requirements are dictating the creation and management of the "Digital Twin"

September 17, 2018
Michel Gadbois, iBASEt
iBASEt: Your Partner for Success

Global Product Data Interoperability Summit | 2018

• End-to-End digital integration of engineering and change control across the value chain
• Well defined Out-of-the-Box best-in-class processes, get up and running quickly
• Integrated Quality Management across Manufacturing Value Chain

• Only vendor solely focused on solving complex manufacturing and sustainment issues
• Professional Services team: 20+ years of Complex Mfg & MRO Operations experience
• Partner Network of global system integrators to help accelerate roll outs

• 60,000 Solumina users
• 80% of Leading Complex Manufactures have chosen iBASEt
• 30 years of organic growth through Customer Success – not – M&A
The Solumina software solution suite is designed to make highly complex OEM and maintenance enterprises simple, combining, in one suite a MES, QMS, SQM and MRO

- Easily integrated to the CAD, PLM, and with the ERP
- Preconfigured and easy to implement (“Out Of The Box”)
- Offering easy-to-use graphical interface
- Built according to the “lean” philosophy

+ of 150 factories and +60,000 users in the world work with Solumina
Our Highly Complex Manufacturing Customers

Global Product Data Interoperability Summit | 2018

Aircraft Components

- Lockheed Martin
- Parker
- Rolls-Royce
- Pratt & Whitney
- NORDAM
- UTC Aerospace Systems
- Jabil
- GE Honda Aero Engines

Industrial & Fabricated Parts

- Solar Turbines
- Harcostarco
- Jabil

Commercial & Military MRO

- L3 Communications
- U.S. Air Force

Airframe Assembly

- Sikorsky
- Gulfstream
- Cirrus Aircraft

Military & Classified Weapons

- Orbital ATK
- General Dynamics
- National Security Campus
- Nammo
- Sandia National Laboratories
- Los Alamos National Laboratory

Space Products

- Orbital ATK
- NASA
- Airbus Defence & Space
- Boeing
- Northrop Grumman
- Virginia
- Orbit

Medical Device & Equipment

- Earlens

Naval Components

- Textron Systems
- BWXT

4
3 Percent

That’s how much of a Complex Discrete Manufacturer’s revenue doesn’t make it to their bottom line.
Why are Executives Rarely seen getting excited about wasting 3 percent of revenues?

- Those dollars are rarely reported as waste.
- The more profitable a manufacturer is, the less it realizes that money is being wasted.
- Entire management practices and methods characterize these as Costs (The Cost of Doing Business)
- What we often hear early in the discovery:
 - “This is what it costs to Design, Plan and Execute at our company”
 - “We are world-class leaders in quality and efficiency for our industry”
The Digital Thread - Definition

In Brief, the Digital Thread represents the sum of all model data, product structure data, metadata, effectivity data, process definition data including supporting equipment and tools that are **DIGITALLY LINKED** together to form a single, contiguous definition of all value-added decision made during the definition of a product, its configuration, manufacturing and repair processes, logistics (vendors and subs) and operational support (PBL).
WHAT IS THE KEY TO THIS **DIGITAL THREAD** LINK?

THE CAD ID!
de7a8e65-ff17-447a-8b33-7a27e4f37bac

We Fetch and store it for every Item listed in a Bill of Material.

The CAD ID is the backbone of the digital Thread!
WHAT DOES A DIGITAL THREAD COMPLIANT BOM LOOK LIKE?

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REV</th>
<th>BOM LINE</th>
<th>CAD ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>4545-24313-1</td>
<td>F</td>
<td>001</td>
<td>de7a8e65-ff17-447a-8b33-7a27e4f37bac</td>
</tr>
<tr>
<td>4545-24313-1</td>
<td>F</td>
<td>001</td>
<td>84365289-16c9-4621-bb20-346ff81bd82</td>
</tr>
</tbody>
</table>

WHAT DOES A NON DIGITAL THREAD COMPLIANT BOM LOOK LIKE?

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>REV</th>
<th>QTY</th>
<th>BOM LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4545-24313-1</td>
<td>F</td>
<td>2</td>
<td>001</td>
</tr>
</tbody>
</table>
The Digital Thread–Data Model

• What Data Categories Make up the Digital Thread?
 • Part Numbers
 • 3D Models
 • Surfaces, dimensions, tolerances, datums,
 • Metallurgy, hardness,
 • Metadata (DFMEA, key characteristics, control limits)
 • Item Master Data
 • Authorize Sources
 • Inventory Locations, levels, replenishment methods
 • Bills of Materials, effectivities, options and features
 • Bills of Processes (Fabrication, Assembly, Integration, Test)
 • Service Intervals
 • Much, much, more…
A PLE like Solumina enables:
DIGITAL THREAD COMPLIANT Process Definition, Manufacturing and MRO Execution, Defect Management, Engineering change and Supply Chain Management throughout the life of the Program and Units.

WHAT is a PLE?

A PLE like Solumina enables:
DIGITAL THREAD COMPLIANT Process Definition, Manufacturing and MRO Execution, Defect Management, Engineering change and Supply Chain Management throughout the life of the Program and Units.

SQA
- Quality Requirements Planning
 - Product Characteristics and Requirements
- Supplier Quality Planning
 - Product Inspection Definition
- Supplier Quality Correction
 - Supplier Discrepancies and Corrective Action

MES/QMS
- Manufacturing Reqt’s Planning
 - Product Characteristics and Requirements
- Process Planning
 - Manufacturing Process Definition
- Process Quality
 - Discrepancy and Corrective Action

MRO
- MRO Requirements Planning
 - MRO Requirements Definition
- Process Planning
 - MRO Routine Work and Process Planning
- Non Routine Disposition
 - Over and Above, MRO quality, and Sub-work

Audits and Reporting
Where does Data get Defined?

The Complete Product Lifecycle from PLM to PLE

Throughout the product lifecycle, key Value-Added elements are defined and inserted into the product / process definition.

Anywhere this data is defined too late, there is a cost, a risk and a quality impact.

Anywhere this data is copied, transcribed or re-interpreted, there is an even higher risk and potential quality impact!
Design Value Added Data

- 3D Modeling
- Virtual Assembly
- Process Modeling
- Engineering Bills of Material
- Quality Control Plans

ORANGE items are commonly on the Current Digital Thread
Production Value Added Data

• Model / Drawing - Step Views
• Detailed Work Instructions
• Operationalized Part Lists
• Build Control Sequences
• Traceability Data Req’s Per Contract
• Test Steps and Signoffs Per Contract
• Authorized Supplier Lists & KPIs

ORANGE items are commonly on the Digital Thread
Why should we change? What’s the risks?

Value Added Tasks:

<table>
<thead>
<tr>
<th>Model Design</th>
<th>E-BOM</th>
<th>M-BOM</th>
<th>Process Plan</th>
<th>Work Orders (WIP)</th>
<th>Finished Goods</th>
<th>Customer Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigning Basic Alts & Subs</td>
<td>Yield Rates</td>
<td>Operations & Steps</td>
<td>Quantities & Dates</td>
<td>Sales Order Complete</td>
<td>Walk-Thru & Acceptance</td>
<td></td>
</tr>
<tr>
<td>Assigning Make-buy</td>
<td>Phantom Flags</td>
<td>MBOM Operationalized</td>
<td>Priorities</td>
<td>UJD Publish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assigning Contract requirements</td>
<td>Location Based Alternates</td>
<td>Work Center Assignments</td>
<td>Team Assignments</td>
<td>Sell-Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selecting Vendors</td>
<td>Installation Sequence</td>
<td>Time Standards</td>
<td>Material Issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assigning Macro Lead Times</td>
<td>Units of Measure / Conversions</td>
<td>Tool Usage</td>
<td>Tool Issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selecting Materials</td>
<td></td>
<td>Process Spec Assignment</td>
<td>Traceability Data Collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assigning Macro Planned Costs</td>
<td></td>
<td>Serialization Rules</td>
<td>Sign-offs & Inspections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assigning Work Locations</td>
<td></td>
<td>SPC Rules</td>
<td>Move from WIP to FG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential Non-Value-Added Tasks:

<table>
<thead>
<tr>
<th>Transcribing BOM Components</th>
<th>Transcribing BOM Components</th>
<th>Step Visuals</th>
<th>Process/Part Alterations</th>
<th>ECO Rework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigning TM Effectivity</td>
<td>Assigning TM Effectivity</td>
<td>Upper/Lower Limits</td>
<td>Parts List Creation</td>
<td>As-Built/DD250 Create</td>
</tr>
<tr>
<td>Assigning Reference Designators</td>
<td>Assigning Reference Designators</td>
<td>Component TM Effectivities</td>
<td>Paper Work Package Create</td>
<td>UJD Data Collect</td>
</tr>
<tr>
<td>Assigning Make-buy</td>
<td>Location Based Alternates</td>
<td>Location Based Alternates</td>
<td>manual Signatures</td>
<td>Paper Packets on CD</td>
</tr>
<tr>
<td>Assigning Contract requirements</td>
<td>GD&T data (PMI)</td>
<td>GD&T data (PMI)</td>
<td>Drawing Lookups</td>
<td>Red-Lines Audited</td>
</tr>
<tr>
<td>Selecting Vendors</td>
<td>Yield rates</td>
<td>Yield rates</td>
<td>Process Spec Lookups</td>
<td>Non-Conformances Audited</td>
</tr>
<tr>
<td>Assigning Macro Lead Times</td>
<td>Installation Sequence</td>
<td>Installation Sequence</td>
<td>Manual Calculations</td>
<td>UJD Labels Audited</td>
</tr>
<tr>
<td>Selecting Materials</td>
<td>Units of Measure / Conversions</td>
<td>Units of Measure / Conversions</td>
<td>Manual Red Tags</td>
<td>DCMA Audits</td>
</tr>
<tr>
<td>Assigning Macro Planned Costs</td>
<td></td>
<td></td>
<td>Manual Precedence Control</td>
<td></td>
</tr>
<tr>
<td>Assigning Work Locations</td>
<td></td>
<td></td>
<td>Manual Operation Activation</td>
<td></td>
</tr>
</tbody>
</table>

Risks:

- **L - Model Errors**
- **L - Alternates Errors**
- **M - Alternates Errors**
- **L - Structure Errors**
- **M - Effectivities Errors**
- **M - Quantity Errors**
- **L - TME Errors**
- **M - Duplication of IM Data**
- **L - Overly Tight Tolerances**
- **M - Overly Loose Tolerances**
- **H - Raw Materials Errors**
- **L - Work Center Errors**
- **L - Time Standard Errors**
- **L - Work Center Errors**
- **L - Time Standard Errors**
- **M - Tooling Errors**
- **M - Process Errors**
- **M - Signature / Inspection Errors**
- **M - Precedence Errors**
- **H - Access Rights Errors**
- **H - Raw Materials Errors**
- **H - Model Errors**
- **H - Structure Errors**
- **H - TME Errors**
- **H - Raw Materials Errors**
- **H - Model Errors**
- **H - Structure Errors**
- **H - TME Errors**

What’s the risk?
Our Customers are getting smart!

What’s Changed in Defense Acquisition Requirements

• Many new Programs now have Contract Elements that refer specifically to the delivery of a Digital or Cyber artifact that COMPLETELY describes the Model-Based as-Designed, the reconciled As-built (with necessary waivers) and the Quality history (including test results) of the asset.

• Gone are the days where delivering functioning hardware was the only trigger for payment.

• These Digital artifacts need to be created and validated in real-time as each vendor produces their sub-assemblies and as each facility performs the final integration.

• Within 5-7 years, we believe that all Major Defense Programs with have Digital-Twin requirements that make-up a important portion of the payment and Acceptance trigger.
Three Areas Affected by the Digital Thread

Remember
The 3% of Revenue
That never makes it to
The bottom line.
The Three Opportunities presented by the Digital Thread

- Each element of the Value Stream where data is either:
 - Re-Invented
 - Re-Interpreted
 - Transcribed
- INTRODUCES AN OPPORTUNITY FOR DEFECT...
- If the defect is caught in -house, the impact is:
 - Dollars
 - Schedule
- If the defect is NOT caught in-house, the ESCAPE affects the program credibility and repeat unit sales
The Three Opportunities presented by the Digital Thread

- The Digital Thread introduces for the first time a framework of Value-Added-Sustainment:
 - Work Gets gone ONCE
 - Quality variances are resolved ONCE
 - Engineering Changes are processed ONCE

- Let's use an Example: **Step by step visuals** for a Major Defense Program:
 - Quantity of Visuals for entire structure = 150,000
 - Avg. Labor Hours per Visual by Mfg. Eng. = 1.5
 - Avg. No. of Process / ECO Changes per Visual* = 6
 - Average Burdened Cost of Mfg Eng ($/hr.) = 67
 - Cost of NOT having Visuals on Digital Thread** = $90,450,000

* For life of Program
** Immediate Cost only, does not include Risk Cost of Quality cost due to increased opportunities for defect.
The Three Opportunities presented by the Digital Thread

• Even if Costs and Quality Rates were NOT an issue,
• A Program cannot afford any variation that will affect the program’s ability to meet program milestone dates.
• Most programs have penalty clauses that can get triggered by:
 • Late milestone deliveries
 • Escape rates / Missing Traceability Data (UNKs)
 • Unit Commissioning dates
• **BOTTOM LINE:** Programs need stability and little to no process variability. Once a good decision has been made (Value-Added Content), it should be preserved.
Classifying your level of Digital Thread Adoption by Program

D – 3D Model Drawings, Paperless Instructions, Manually generated Visuals, Separate Data Collection sheets, Separate Inspection Sheets, Receiving Inspection, Electronic QA System, Paper As-Built Docs.

A – 3D Model Views, 3D Bills of Resources & Bills of Process, Integrated Execution, Shop Quality, Supplier Source Inspection, As-Built Data and Process Capability Data (Heat Maps) returned to PLM System.
Here’s a Simple Matrix to determine the best path forward!

<table>
<thead>
<tr>
<th>Grade/Action</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 4 Incremental Steps (Stages) to getting on the Digital Thread

• **Stage 1**
 - Item Master and Default 3D Visuals.
 - Engineering Bills of Materials.

• **Stage 2**
 - Engineering Changes.

• **Stage 3**
 - E-BOM to MBOM Management in Model Based Space.
 - Enhanced Engineering Changes.

• **Stage 4**
 - Process Management leveraging Model-Based Space for Visuals Creation.
Stage 1: Leveraging Item Master and BOM data in PLE

- You already have an item master that includes default model-based visual data that easily can be used for creating new annotations or model Views. The PLE stores those views directly in the PLM.
- Your Default Bill of Materials (E-BOMs or Combo E/M-BOMs) already have most of the needed data for Manufacturing
 - Effectivities
 - Alternates
 - Phantoms
 - Standard positions (LIDs, SINs, Ref Des, Find Numbers)
 - Default BOM Model-Based Visual with Thumbnail.
 - CAD IDs (For Instance-based reconciliation)
- This BOM Data is reconciled to the Process Plans AND Unit Histories by The PLE.
Stage 2: Leverage PLM Engineering Change messages in the PLE

- Engineering Changes are difficult. They reach all over the Planning data and shop floor systems and never end… Mistakes are not only common, they are a virtual certainty.

- ONE Engineering Change can involve hundreds of discrete actions that need to affect some data, skip other similar data and all changes need to be traceable and auditable.

- Use the structured ECO Messages and Bill of Resource updates to allow the PLE to create a SCRIPTED list of changes for Process Plans, Work Orders, Inspection or Sampling Orders and Discrepancies.

- First Article rules will automatically be triggered by the Engineering change actions

- Employees will be individually alerted to any changes since their last completion.
Stage 3: Leverage your PLE Tools to Manage MBOM Creation and Reconciliation

- EBOM to MBOM Transformation is the most costly source of Process Definition mistakes in A&D manufacturing.
- Classical methods for creating and maintaining MBOMs provide little in the way of reconciliation to the PLM Model-Based data.
- EBOMS and MBOMS created from one another in the PLM tool maintain a traceability that is important for making revisions and evolutions less error-prone. The visual Model-based tools also make engineering changes across multiple MBOMS easier to deal with.
- The PLE reads the EBOMS and MBOM Headers and components including Instance-based data to ensure that we know the location of each CAD instance in the build process. This ensures that ECO changes affecting only partial quantities of a Part Number are properly processed.
Stage 4: Leverage your PLM data Links to facilitate Process specific visuals

- Process Specific Visuals are Time-Consuming to Create and keep current. They are usually:
 - Sketches
 - Photos
 - Model-Based Views
 - Multi-Page PowerPoint or Word Docs
- They become obsolete almost as soon as they are birthed…
- Using Model-Based tools to auto-create process Visuals saves time and eliminates errors. They require process steps with assigned components. The PLE provides a framework for creating these process recipes in order to generate Model-Based Visuals automatically for new processes and Modified Processes after ECOs.
The PLE Integration Bridge offers Standard Interfaces to PLM and ERP to facilitate growing and sustaining the Digital Thread

PLM
- Process Plan (BOP)
- Process 3D Views
- Product Characteristics
- ECN
- ECN Status Update
- WO Status Update
- Non-conformance to Problem Report
- Disposition/Deviation Approval
- Corrective Action Item to ECR

Enterprise Service Bus
- Process Change Management
- Process Execution
- Discrepancy Handling
- Part-No (pass-thru)
- BOM (pass-thru)
- Process Routing
- Work Order Release
- Work Order Operation Status
- Work Order Operation Schedule
- Work Order Revisions
- Parts Issue to WO Operation
- Defects, Scrap, Returns

PLE

ERP
- Parts, Production Routings
- Order Fulfillment & Scheduling
- Procurement, Inventory and Supplier Management
THANK YOU

QUESTIONS?