Jamie Kessel

Boeing Training & Professional Services

Azure Platform Best Practices in Application Development and Deployment
Presentation Topics

Global Product Data Interoperability Summit | 2019

- Background of Cloud computing
- Why the Cloud is attractive to new and existing projects
- Cloud providers – top 10
- Azure infrastructure
- Azure typical application architecture
 - VM’s
 - Managed services
- Issues with utilizing gateways
- Microsoft Azure best practices
- Q&A??
Background of Cloud computing

• Cloud computing can trace its roots to the 50s and 60s
 • Large expensive mainframes were used for computer processing
 • Companies engaged in Time Sharing agreements instead of purchasing large, complex, and expensive mainframe computers

• Cloud computing types and models
 • Private Cloud – A private network owned by a single company or entity that may be located in the companies datacenter or managed by a third party through a contract with the owning companies IT department
 • Public Cloud – A Cloud provider company that owns the servers, network, storage, and infrastructure that provides computing capabilities for a fee to any company or organization willing to pay for the service
 • Hybrid Cloud – A combination of public and private Cloud solutions that provide computing to the user community
Background of Cloud computing

- **Infrastructure as a Service (IaaS)**
 - Servers, storage, network bandwidth as a service where the customer pays for what they use
- **Platform as a Service (PaaS)**
 - An on demand way of provisioning computing services that are automatically provided to the customer during development, testing, and deployment of applications
- **Serverless computing**
 - Similar to PaaS serverless computing enables customers to focus on building applications and the setup, management, and capacity planning are provided by the Cloud provider
- **Software as a Service (SaaS)**
 - The software application is hosted by a Cloud provider and they provide the management for the customer, such as security or application updates
Cloud Computing Providers

- Amazon AWS
- Microsoft Azure
- Google Cloud Platform
- Alibaba
- IBM Cloud
- Oracle Cloud
- Pivotal Cloud Foundry
- Verizon
- DigitalOcean
- Kamatera
<table>
<thead>
<tr>
<th>Region</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td></td>
</tr>
<tr>
<td>Central US</td>
<td>Iowa</td>
</tr>
<tr>
<td>East US 2</td>
<td>Virginia</td>
</tr>
<tr>
<td>East US</td>
<td>Virginia</td>
</tr>
<tr>
<td>North Central US</td>
<td>Illinois</td>
</tr>
<tr>
<td>South Central US</td>
<td>Texas</td>
</tr>
<tr>
<td>West US 2</td>
<td>Washington</td>
</tr>
<tr>
<td>West Central US</td>
<td>Wyoming</td>
</tr>
<tr>
<td>West US</td>
<td>California</td>
</tr>
<tr>
<td>Canada Central</td>
<td>Toronto</td>
</tr>
<tr>
<td>Canada East</td>
<td>Quebec City</td>
</tr>
<tr>
<td>Brazil South</td>
<td>Sao Paulo State</td>
</tr>
</tbody>
</table>
Microsoft Azure DataCenter Locations

Global Product Data Interoperability Summit | 2019

• Asia

East Asia
Southeast Asia
Australia Central
Australia Central 2
Australia East
Australia Southeast
China East
China North
China East 2
China North 2
Central India
South India
West India
Japan East
Japan West
Korea Central
Korea South

• Hong Kong
• Singapore
• Canberra
• New South Wales
• Victoria
• Shanghai
• Beijing
• Shanghai
• Beijing
• Pune
• Chennai
• Mumbai
• Tokyo, Saitama
• Osaka
• Seoul
• Busan
Microsoft Azure DataCenter Locations

Global Product Data Interoperability Summit | 2019

• Europe

 North Europe
 Ireland

 West Europe
 Netherlands
 Paris

 France Central
 Marseille

 France South
 London
 Cardiff

 UK South
 Frankfurt

 UK West
 Magdeburg

 Germany Central

 Germany Northeast
Microsoft Azure Typical Application Architecture

Global Product Data Interoperability Summit | 2019

• Microsoft Azure has two implementation approaches:
 • Managed Services
 – Managed automatically by the backend
 – Has fewer tools and abilities to monitor the environment
 • VM server farm
 – Application architecture and environment is built out on Microsoft Azure VMs
 • Farm of VMs in the Cloud used to build an application environment
Microsoft Azure Typical Application Architecture
Gateway Issues

My experience with gateways is they cause issues

- These gateways are used to retrieve data from legacy systems in company DataCenters from cloud based applications
- The primary issue are performance impacts
- Additional impacts are when a project doesn’t own or manage different components of the architecture, like gateways, it is difficult to prevent outages and monitor an environment
Microsoft Azure Best Practices

- Utilize Azure Advisor for environment optimization
 - Pulls recommendations from the following:
 - Azure Security Center
 - Azure Cost Management
 - Azure SQL DB Advisor
 - Azure App Services
- Utilize MOB services for things like role based authorization
- Leverage the toolset provided by Microsoft, for example:
 - TFS
 - Blob storage
 - Azure notifications
 - Azure Active Directory (IAM product)
Q&A

• Questions??
• Comments??