2019 MBSE Workshop

Greg Pollari, Collins Aerospace

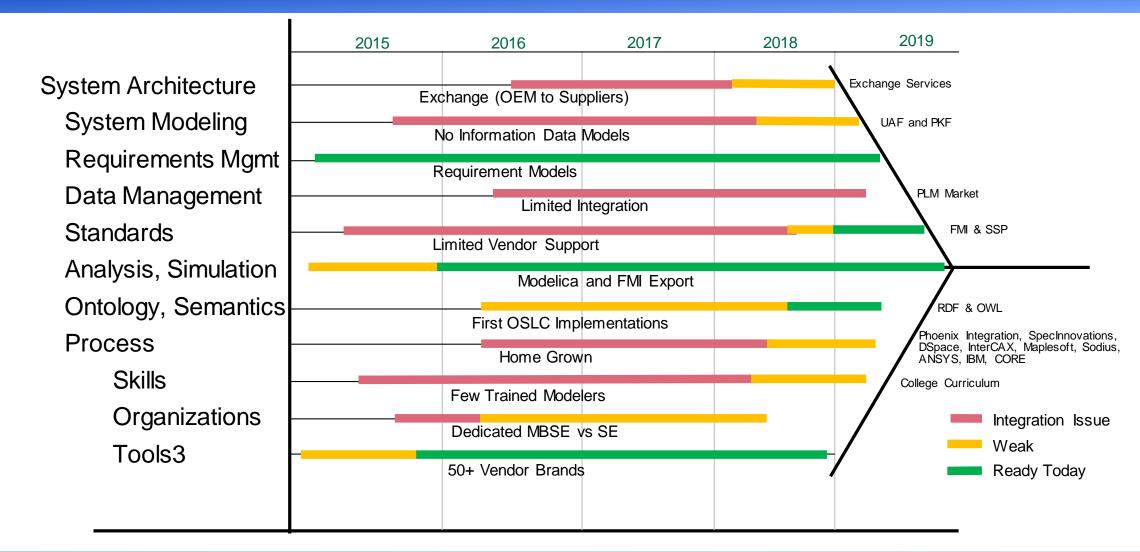
and
Mark Williams, The Boeing Company

Workshop Agenda

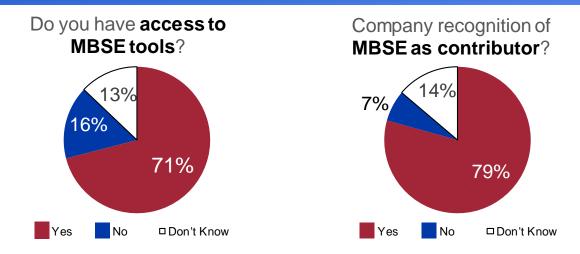
- Intro, History, summary, goals of workshop
- Survey1 5 min
- Don Tolle, ClMdata 35 min
- Survey2 5 min
- Talisen 15 min
- Break 20 min
- Workshop exercise 1.5 hr
- Survey3 5 min

MBSE Workshop Agenda

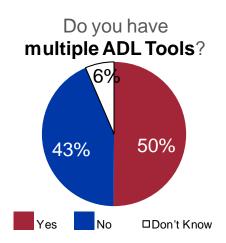
- What is the MBSE Workshop?
- CIMdata MBSE meets PLM
 Don Tolle
- Industry Survey
- Talisen Technologies MBX Data Exchange John Stevens, Dan McAfee, and Neil Lichty
- Rest Break
- Concurrent MBSE and creating Exchange Packages
 Workshop Exercise

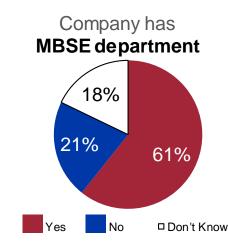

Workshop History at GPDIS

Global Product Data Interoperability Summit | 2019


- The first Systems Engineering Track in 2014
 The impact on PLM, Contributions/Suggestions from Multiple Industries
- 2015 The first MBSE Workshop OEM to Supplier Interoperability Prioritized Industry Data Standards: SysML, OSLC, FMI, ReqIF
- 2016 MBSE Workshop the Roadmap outline Implementation issues - where/how to start, the role of the PLM Vendors
- 2017 MBSE Workshop Gaps in the Roadmap Interoperability Issues, the need for Leadership
- 2018 Improving/Integrating our Models with meta-data The State of the Industry, opportunities and our Roadmap

Discuss MBSE Interoperability/Implementer's Forum on Monday at 5:20 PM


2015 to 2018 Workshop: Industry Roadmap



2018 MBSE Presentations and Workshop

Data from 2017 Workshop

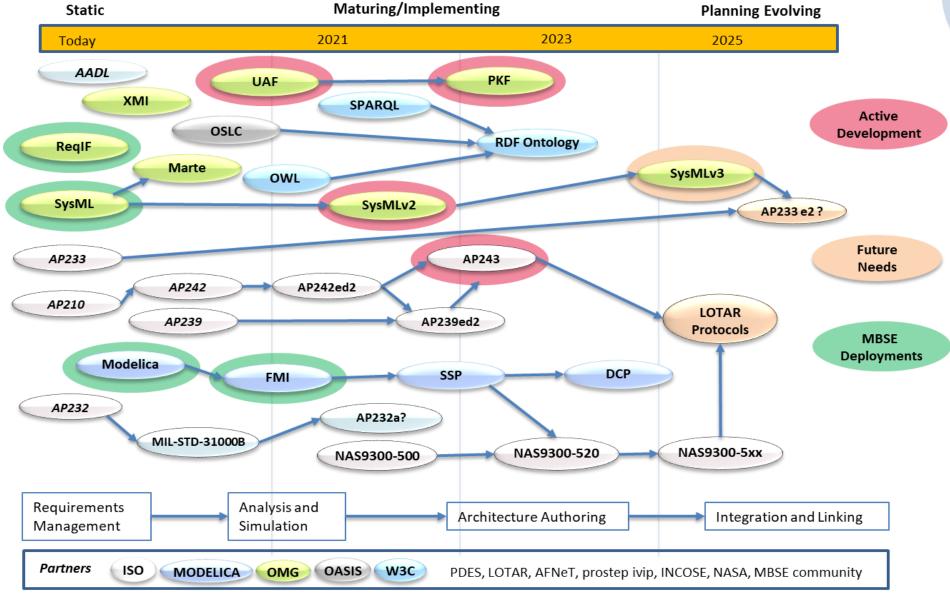
- Industry CIMdata
- Explore MoSSEC Build a Bicycle
- GPDIS Work Statement and Survey

Presentation	Participants
Airbus/Prostep iViP	63
Airbus	31
ANSYS	43
Aras	33
Boeing	43
Boeing	59
Boeing	42
Northrop Grumman	42
Northrop Grumman	73
Phoenix Integration	31
MBSE Workshop	70

MBSE Enablers

Advocating for MBSE

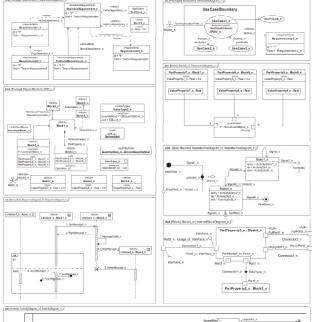
Global Product Data Interoperability Summit | 2019

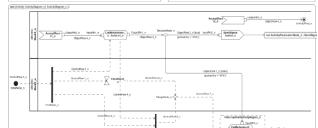

Who Are We?

PDES, Inc. is an international industry, government, and university consortium committed to accelerating the development and implementation of standards for product data exchange in the Digital Enterprise.

MBSE Data Standards Roadmap

An Academic Analysis


Global Product Data Interoperability Summit | 2019



Current Status of SysML Model Interchange between Common Modeling Tools via XMI – A Practical Study

Hristo Apostolov, Damun Mollahassani Madjdabadi University of Kaiserslautern, Institute of Virtual Product Engineering (VPE), EMEASEC 2018 / TdSE 2018

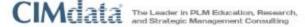
Standard SysML Test Models

Used with permission: Hristo Apostolov, MSc, Institute for Virtual Product Engineering, Technische Universität Kaiserslautem

Source tool >		IBM	RR				NM (CSM		
Target tool >	IBM RR	NM CSM	PTC IM	SS EA	cluster total	IBM RR	NM CSM	PTC IM	SS EA	cluster total
Structural Elements	72%	83%	0%	50%	51%	31%	100%	6%	88%	56%
Activities	100%	100%	82%	65%	87%	81%	100%	81%	81%	86%
Interactions	86%	100%	0%	100%	71%	86%	100%	0%	100%	71%
State Machines	100%	100%	25%	100%	81%	60%	80%	20%	60%	55%
Use Case	100%	100%	40%	100%	85%	100%	100%	40%	100%	85%
Requirements	100%	17%	0%	83%	50%	0%	100%	0%	17%	29%
	89%	86%	30%	72%		58%	98%	31%	78%	
Source tool >		SS	EA				PTC	IM		

Source tool >		SS	$\mathbf{E}\mathbf{A}$		
Target tool >	IBM RR	NM CSM	PTC IM	SS EA	cluster total
Structural Elements	56%	31%	6%	100%	48%
Activities	81%	100%	63%	100%	86%
Interactions	86%	100%	0%	100%	71%
State Machines	100%	100%	50%	100%	88%
Use Case	100%	100%	40%	100%	85%
Requirements	33%	0%	0%	100%	33%
	72%	69%	28%	100%	

53%


49%

53%

Advocating for MBSE

Global Product Data Interoperability Summit | 2019

PLM RESOURCES EDUCATION PLM CONSULTING RESEARCH MEMBERSHIPS EVENTS CALENDAR

Members	
Mission	
Publications	
Direction Statements	
Direction Statements	

HOME > HOME: AEROSPACE & DEFENSE PLM ACTION GROUP

Founded in 2014, the Aerospace & Defense PLM Action Group is an association of aerospace & defense companies within CIMdata's globally recognized PLM Community Program, which functions as a PLM advocacy group.

Our stated mission is to:

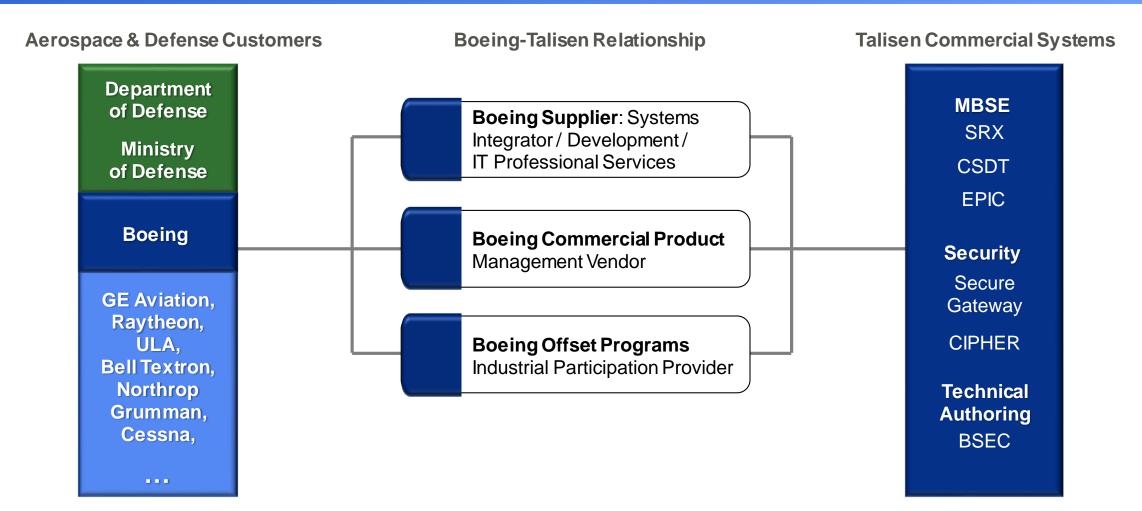
- Set the direction for the aerospace & defense industry on PLM-related topics that matter to members
- Promote common industry PLM processes and practices

CIMdata Presents

Global Product Data Interoperability Summit | 2019

MBSE meets PLM: Trends, Challenges and Opportunities

Donald Tolle, Practice Director Simulation-Driven Systems Development CIMdata, Inc. d.tolle@cimdata.com



MBSE Workshop Agenda

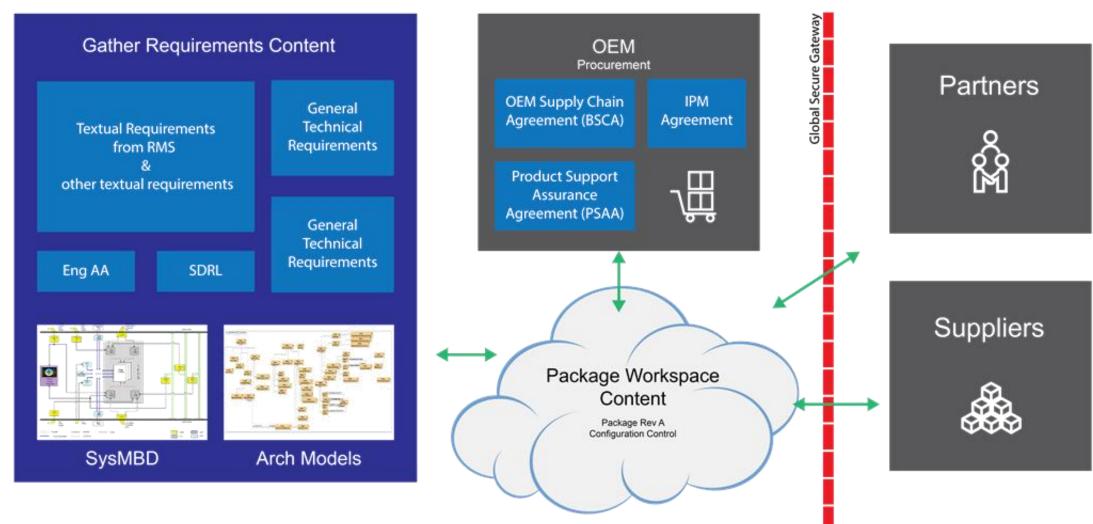
- What is the MBSE Workshop?
- CIMdata MBSE meets PLM
 Don Tolle
- Industry Survey
- Talisen Technologies MBX Data Exchange John Stevens, Dan McAfee, and Neil Lichty
- Rest Break
- Concurrent MBSE and creating Exchange Packages
 Workshop Exercise

Talisen and Boeing

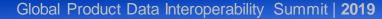
SRX Supporting Digital Transformation of Model-Based Engineering

Global Product Data Interoperability Summit | 2019

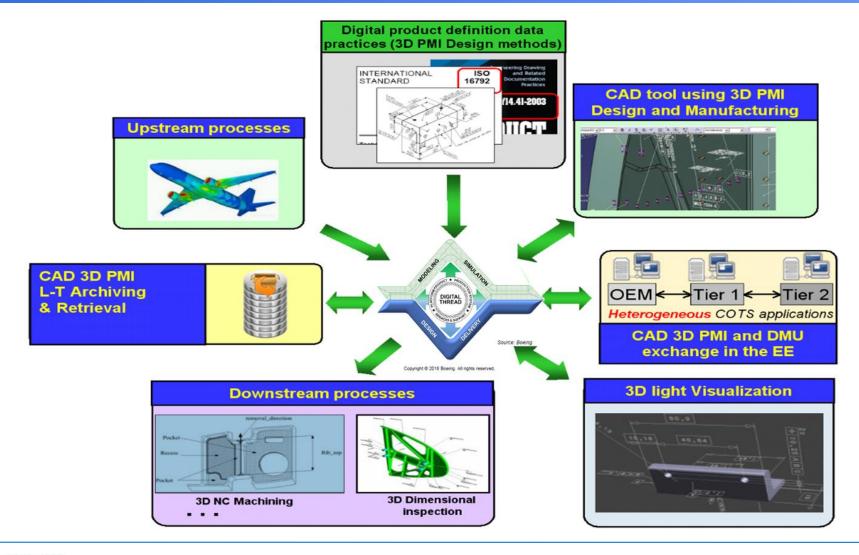
SRX revolutionizes the method for packaging requirements and exchanging engineering models, while maintaining configuration control and digital thread integrity.


- Design Requirement Collaboration
- Provides integration between Design Engineering, Supplier Management and Boeing Design Suppliers, enabling innovative, affordable and value driven Aerospace product designs.
- Role-Based Customization
 Customizes interaction based on roles for Engineering,
 Stakeholders and Procurement Agents during the
 model-based requirements development and exchange
 to first pass quality of design requirements.

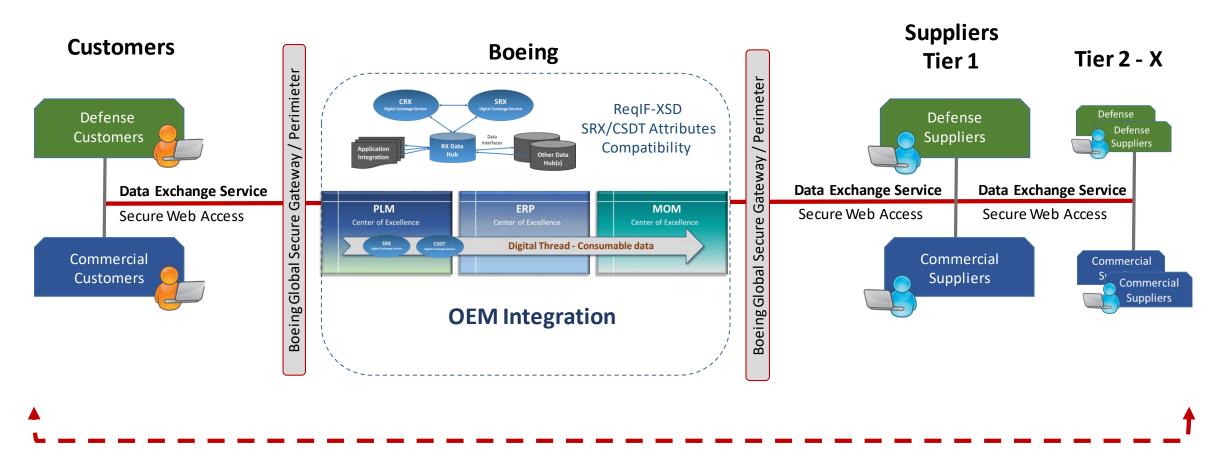
- Enhances the Buy-Package Integration
 - Enables model based buy-packaging for product development and requirements exchange with suppliers during the front end of the development lifecycle.
- Leverages Digital Data and Configuration Control


Accelerate change throughout the business. Supports Model-Based Systems Engineering (MBSE) and establishes metrics for managing requirement first pass quality.

SRX Virtual Shared Workspace

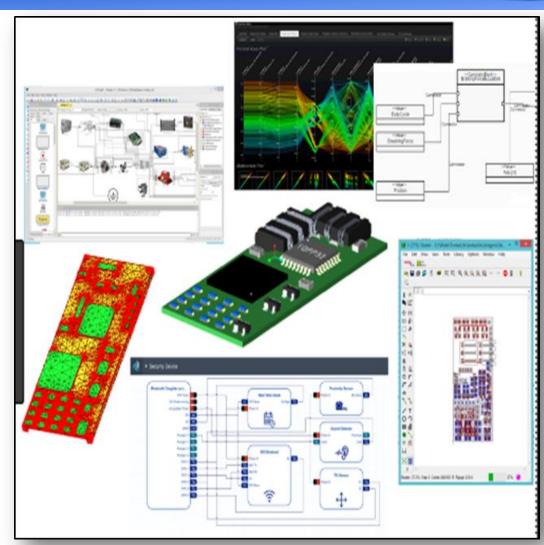


MBE Business Strategy



MBX Data Exchanges Services Interoperability

Global Product Data Interoperability Summit | 2019



Supply Chain end-to-end Interoperability

Applying Model-Based Engineering Methods

SERN Supple Requirements and Part Of The Control of

- Requirement Quality, Analysis and Reuse
 - ✓ Improves Data Quality
 - ✓ Reduces effort for creation and review
 - ✓ Takes advantage of previous work
 - Provides consistency for compliance
- Advanced Analytics Available
 - ✓ Ability to use metrics to assist the user in creating quality Data relationships to requirements
 - Availability of customized group and program metrics and reporting
- Product Reliability & Maintainability
- Expanded capability for integration of requirements and data

Talisen Technologies – More information

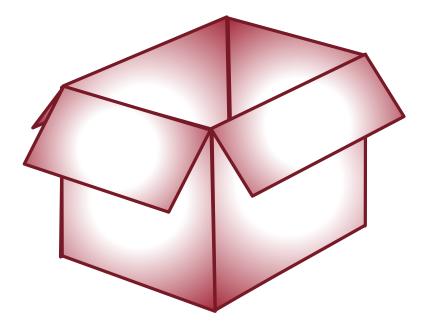
Global Product Data Interoperability Summit | 2019

For more information:

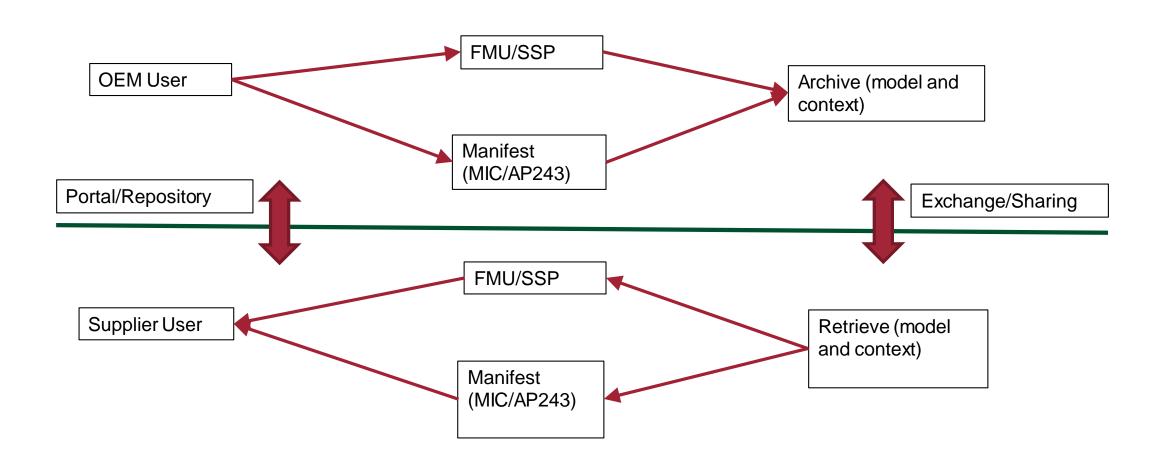
Stop by the GPDIS Vendor exhibit: *Talisen Technologies booth*

Visit us on the web:

https://www.talisentech.com/



2019 Workshop Overview


Global Product Data Interoperability Summit | 2019

- MBSE implies data (model) relationships/integration
- Design Integration implies a process for exchanging data
- Concurrent Design implies we all start work at the same time

We will define, design, manufacture, and qualify a box (made from paper).

Baseline MBSE archive, retrieval, sharing

2019 Workshop Plan

Global Product Data Interoperability Summit | 2019

Divide audience into teams and assign Roles:

- Stakeholders: what to create
- Define and Optimize Design: concepts (size, folds, strength)
- DEIX Team: create, share, manage package process
- Fab Planning and Mfg: verify consumption, execute
- Regulatory/Quality: product, design, build rules
- Scoring Team: audit each team's output, completeness

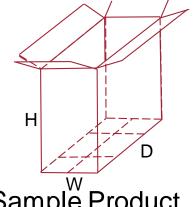
Workshop Execution

Global Product Data Interoperability Summit | 2019

Activity Guidelines:

- We provide handouts to each team with directions and rules for their deliverables.
- 30 minutes to create deliverables and exchange, then everyone will switch teams.
- Identify one manager for each team, and one scribe with laptop (ppt, excel, docs, images), and one folder for each team (to collect paper deliverables).
- Each Team is a separate supplier, owns their IP, and success. Integrate with other teams as required, but maintain 30 minute rule.

Stakeholders


Global Product Data Interoperability Summit | 2019

what to create

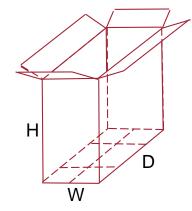
- What will the box be used for (mission)? Will the box be sealed?
- How big should it be? How much weight should it hold?
- Does it need to be recyclable? Can it be made from single sheet of paper?
- What features matter (e.g. color, shape, folds, complexity)?
- How much should be defined digitally with requirements traceability?
- What MBSE capabilities (model/doc relationships) matter?
- Packaging of deliverables: risks and value.
- Should you request Prototypes? Examples for use and longevity.
- Expectations that validate manufacturing quality, mfg capacity, mfg rate,
- Optional: Operations, Cost & Schedule, Performance, Training & Support, Test, Disposal, Manufacturing

Rules to consider:

Assume every team is a different supplier, and they are all customers Ask for status, milestones, reviews
Provide samples, and specify 8.5" x 11" paper (sheets)
Keep requirements simple, and prioritize expectations

Define and Optimize the Design

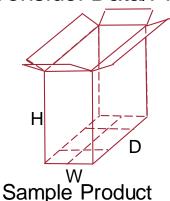
Global Product Data Interoperability Summit | 2019


concepts (size, folds, strength)

- Design Requirement:
 - Volume = H*W*D = x
 - Assume infinite number of design solutions, but optimize
- Add Production Requirement:
 - Minimize surface area: S = 2*(H+W)(D+W) (production cost requirement)
 - Fold methods, and designs for best fabrication rate
 - Minimize use of raw material for box system (zero waste,
 - Options for producibility (with and without fasteners)
- Consider Support and Services Requirements
 - Define specifications, limits, characteristics, stability and safety restrictions
 - Define product options

Assume every team is a different supplier Identify your customers and define plan for status, milestones, reviews Provide samples, and maintain limitation of 8.5" x 11" paper (sheets) Keep requirements simple, and prioritize expectations.

Create a common design package for all of your customers


DEIX Team

Global Product Data Interoperability Summit | 2019

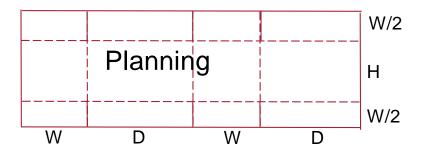
create, share, manage package process

<u>HOW</u> to assemble/bundle/couple/ package the MBSE business objects that need to be exchanged (architecture of the process). What is the architecture of the process, and <u>HOW</u> should the exchange/sharing/access occur?

- 1. WHAT information should be part of the package.
- 2. Assume you know the examples: AP232, MIL-STD-31000, NASA and INCOSE SE Handbooks
- 3. Create a checklist for process and deliverables
- 4. Define and demo MBSE capability based on model/doc relationships.
- 5. Consider Data/Process Conformance and requirements traceability (origination, consumption, V&V)

Rules to consider:

Assume every team is a different supplier, and they are all your customers Include a plan for status, milestones, reviews (based on a 30 min process) Provide process samples, and maintain limitation of 8.5" x 11" paper (sheets) Keep requirements simple, and prioritize expectations.


Create a common process package guidelines for all of your customers

Fab Planning and Mfg

Global Product Data Interoperability Summit | 2019

verify consumption of packages (planning) and execute fab

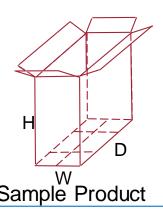
- 1. You are independent of all teams and define the manufacturing allowables
- 2. You will be rated based on consumption of requirements from other teams (30 minute rule)
- 3. Define capacity, rate and limitations based on your requirements
- 4. Consider how to communicate requirements with prototypes
- 5. Define verification rules for data consumption and requirements compliance
- 6. Define how to validate process and manufacturing quality.
- 7. Identify guidelines for operations, team qualifications, product testing

Rules to consider:

Assume every team is a different supplier, and they are all your customers Include a plan for status, milestones, reviews (based on a 30 min process) Provide process samples, and maintain limitation of 8.5" x 11" paper (sheets) Keep requirements simple, and prioritize expectations.

Create a package of capabilities for all of your customers

Н


Sample Product

Regulatory/Quality

Global Product Data Interoperability Summit | 2019

product, design, build rules

- 1. You are independent of all teams and define the regulations for conformance
- 2. You must drive each team's execution to achieve the 30 minute rule
- 3. Define mission/product scope and limitations based on your rules
- 4. How much should be defined digitally with requirements traceability?
- 5. Identify data retention requirements and provisions.
- 6. Expectations to validate process, design, and manufacturing quality.
- 7. Identify guidelines for operations, team qualifications, product performance, Test, Disposal, Manufacturing

Rules to consider:

Assume every team is a different supplier, and they are all your customers.

Ask for each team's plan for status, milestones, reviews (based on a 30 min process)

You govern the success of the BOX manufacturing industry that uses 8.5" x 11" paper (sheets)

Keep requirements simple, and prioritize expectations.

Create a common package of guidelines for all of your customers

Scoring Team

Global Product Data Interoperability Summit | 2019

audit each team's output, completeness

- 1. Packaging unpacking (containers, media, data types, etc.)
- 2. How did each team define and maintain model/doc relationships?
- 3. Generate a scoring model and rate each team
- 4. Evaluate the manifest of package contents and features (plus manifest history)
- 5. Emphasize scoring of the model's/doc's meta-data (pedigree and intent, AP243)
- 6. Add value for Config and Quality criteria for V&V and SDRL purpose/compliance
- Define score for Marking and Security of package and contents (object tagging, package, IP classification, system managing the package)
- 8. Separate score for the DEIX team: Reference a WHAT and HOW doc/process for creating and exchanging the TDP
- 9. Notification of TDP exchange action and method

Rules to consider:

Assume every team is a different supplier, and they are all independent Define your intention to audit each team's progress (based on a 30 min process) Recognize product limitations of 8.5" x 11" paper (sheets), and minimal digital deliverables Keep scoring process simple, and prioritize scoring categories

Create a common process package guidelines for all of your customers

Is your company following or leading?

Global Product Data Interoperability Summit | 2019

At your company:

- Is deploying MBSE the responsibility of your Systems Engineering Organization?
- Is MBSE a Senior Leadership Priority?
- Is there clear communication from your Leadership on the MBSE Strategy?

