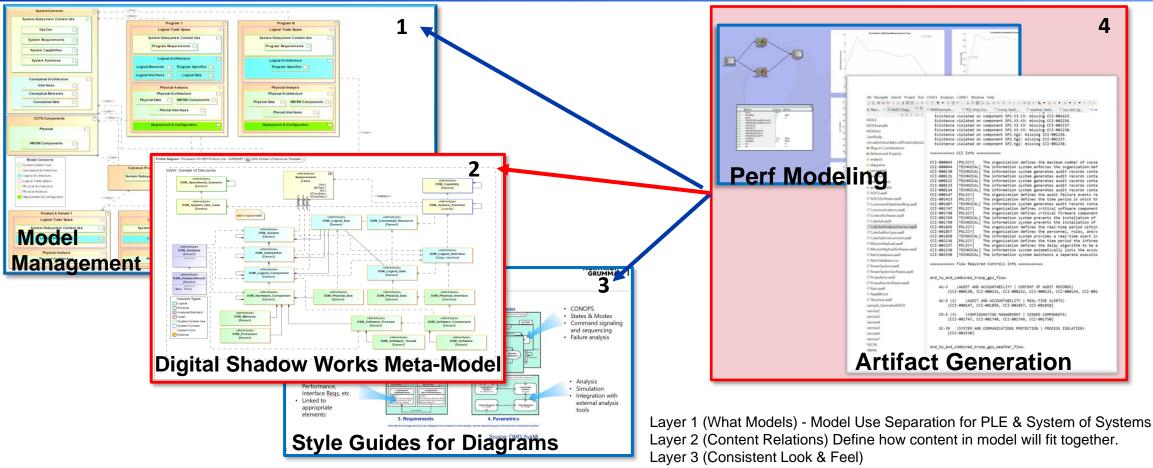
MBSE Enabled Cyber-physical Analysis

Doctor of Engineering Jason Duran

Staff Systems Engineer Northrop Grumman Mission Systems, San Diego 9/11/2022

Global Product Data Interoperability Summit | 2022

- 1. Concepts
- 2. Analysis Transforms
 - a.Power
 - b.Latency
 - c.Resource
 - d.Weight
- 3. Common Issues



Concept: Model Organization Layers

NORTHROP GRUMMAN

Global Product Data Interoperability Summit | 2022

GLOBAL PRODUCT DATA

Layer 4 Analysis tools that allow us to interact with and make better use of the model.

All models should meet the basics of Model Organization.

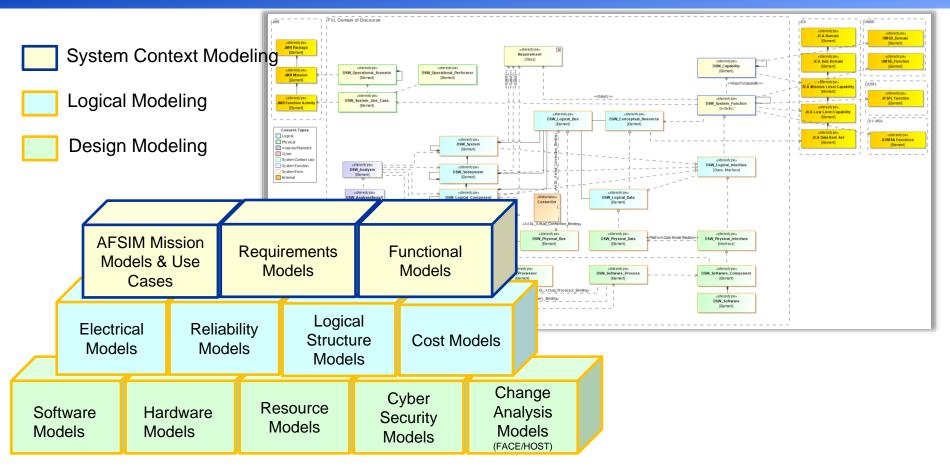
Concept: Meta-model Building Blocks

Global Product Data Interoperability Summit | 2022

Abstraction & Relations

- When building System of System models, understanding abstraction levels is key.
- Rule for content linking from any model must be consistent.

Support for Analysis


- System Modeling provides requirements V&V and analysis visibility.
- Logical Modeling enables rapid assessment of proposed components, SWAP, Reliability, Cost, and reuse across a family of

systems.

Physical Modeling enables rapid detailed understanding of resources and system design.

OBAL PRODUCT DATA

NTEROPERABILITY

Abstraction Layers, Content and Analysis are interlinked in a Domain of Discourse, a fit to purpose Meta-model.

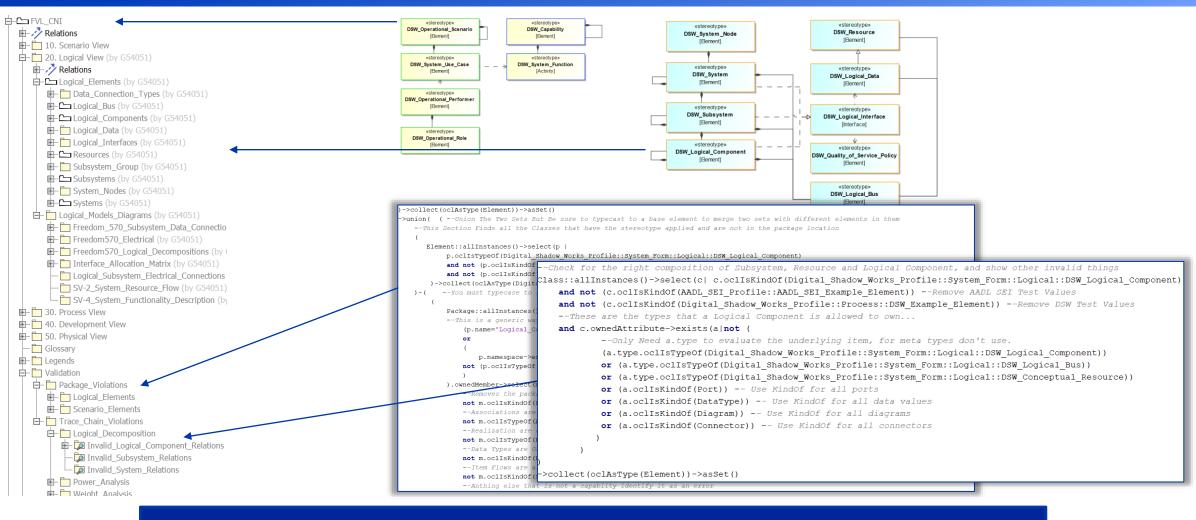
Analysis: Cyber-Physical Transforms Focus

Global Product Data Interoperability Summit | 2022

2022

INTEROPERABILITY

		FVL Domain of Discourse V	/alue Stream		
	Physics Based Simulation	Cyber-Physical Analysis	Statistical & Al Enabled Analysis	Governance & Configuration Management	Product Line Model Integration
Life Cycle Supported	Design & Sustainment	Design & Sustainment	Sustainment	All	All
Abstraction Level	Mission	Logical & Physical	Logical/Physical	All	All
Enabled Capability	Mission Simulation, Physics Predictions	Architectural Analysis, Airworthiness, MOSA Change prediction, Hazard & Fault	Cost Prediction, Intelligent Optimization, Reliability	Requirement Based V&V	Component Import/Extraction
Tools Integrated	AFSIM, SyDECAR, Stars & Stripes, DSW_Profile	OSATE2, DSW_Profile R, DSW_Profile		DSW_Profile, FAF 4.0	DSW_Profile, FAF 4.0
Technique Enabled	Design of Experiment (DOE), Permutations of Experiments, Design Values integrated into Simulations	Resource Utilization, Latency, SWAP, Bus Load, RMF, Fault Tree, FHA	Pareto Optimization, Cost Predictions, Estimate Variance Reductions, Statistical Forecasting	Integrated Models, ATAM Change Assessment, V&V	Digital Backbone, FAF
Open Source / Standard	Jython C	COSATE2	Jython	Ar Markenset Herst For Arene Carlo Farance To Do So T	
Metrics	 Reuse of differing aspects of a simulation Mapping of design values to system requirements to support verification thus, building credibility into the simulation Ability to evaluate system change – how the change propagates, and impacts cost 	 Reuse of differing aspects of a simulation Mapping of design values to system requirements to support verification thus, building credibility into the simulation Ability to evaluate system change – how the change propagates, and impacts cost 	 Uniform process for conducting trades Streamlines trade study review and approval Provides a standard set of evaluation criteria to select from Provides a persistent environment where trades are easily revisited 	 1. Correspondence rules to enforce relations between elements within an architecture description or between elements in differing architecture descriptions 2. Realtime correspondence rule enforcement with user notification 3. Direct contract deliverable alignment with customer. Controlled transparency 	 ASoT-driven Product Line Engineering Resource Consolidation Product Line Visibility Modularized Design Reuse

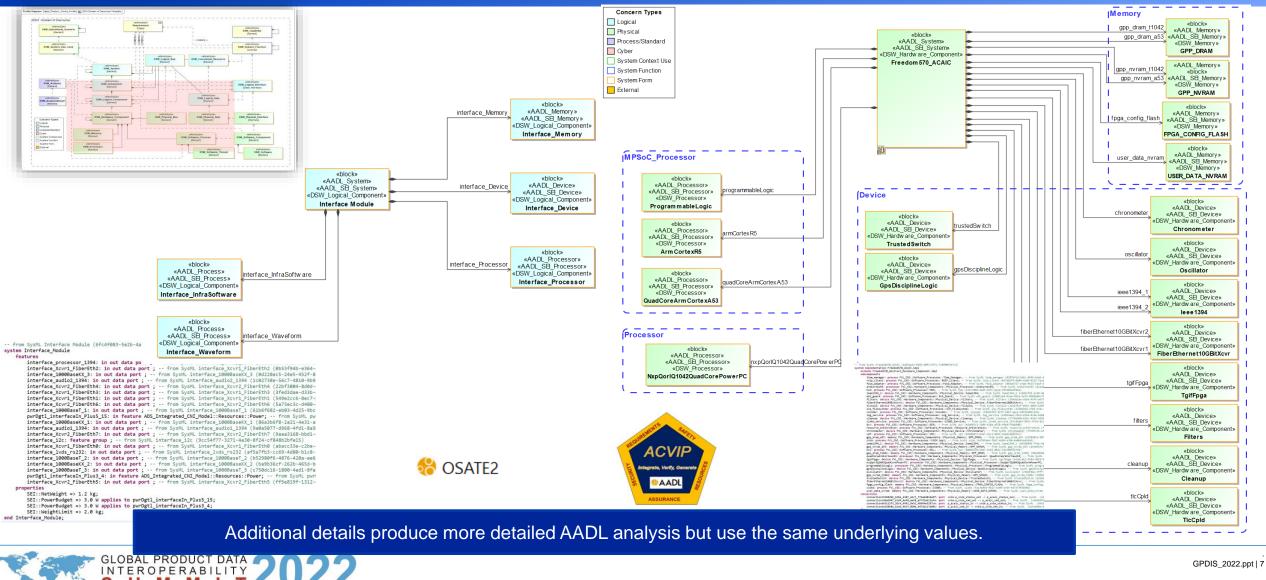

Object Constraint Language (OCL) For Package And Element Relations

NORTHROP GRUMMAN

Global Product Data Interoperability Summit | 2022

GLOBAL PRODUCT DATA

INTEROPERABILITY



Enforces the Domain of Discourse as well as the structure of the model in real-time or as validation rules.

Analytically Equivalent Logical & Design Models

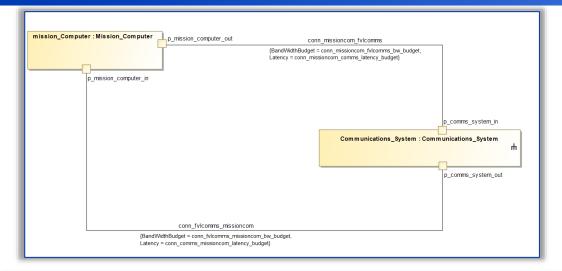
Global Product Data Interoperability Summit | 2022

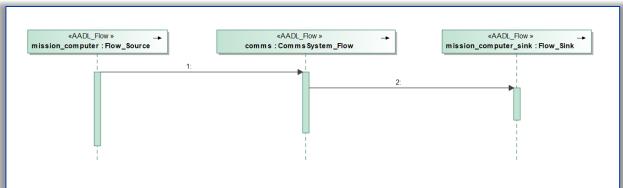
Global Product Data Interoperability Summit | 2022

					from SysML Interface Module (6fc4f083-5e2b-4a25-9b33-a6424220dea8)
IbandPA : LBandPA		freedom 570BackPlane : RadioBackPlane		faPS : AnalogPowerSupply	system Interface Module
	pw rDgtl_bandPA in_Plus5_15 : Pow er pw rDgtl_BpOut_bandPA_Plus5_15 : Pow er		pwrAnlg_Bpin_Plus9 : Power pwrAnlg_PsOut_Plus9 : Power		features
-	Power pwrDgtl_bandPAIn_Mius5_15:Power pwrDgtl_bandPA_Minus5_15:Power	Γ L	Power		interface_processor_1394: in out data port ; from SysML interface_
	pw rDgtl_bandPA in_Mius5_15 : Pow er pw rDgtl_BpOut_bandPA _Minus5_15 : Pow er Pow er				interface_processor_1994: In out data port; from SysML interface
	pwrDgtl_lbandPAIn_Plus3_4 : Pow er pwrDgtl_BpOut_lbandPA_Plus3_4 : Pow er	L	pw rAnlg_Bpin_Minus9 : Pow er pw rAnlg_PsOut_Minus9 : Pow er		interface 1000BaseKX 3: in out data port ; from SysML interface 10
	Power		Pow er		
	pwrAnig_IbandPAIn_Plus9 : Pow er pwrAnig_BpOut_IbandPA_Plus9 : Pow er		pw rAnlg_Bpin_Plus15 : Pow er pw rAnlg_PsOut_Plus15 : Pow er		<pre>interface_audio2_1394: in out data port ; from SysML interface_aud</pre>
L	Power	L	Power		<pre>interface_Xcvr2_FiberEth4: in out data port ; from SysML interface</pre>
	pw rAnlg_lbandPA ln_Minus9 : Pow er pw rAnlg_BpOut_lbandPA_Minus9 : Pow er		pw rAnlo_Bpln_Minus15 : Pow erpw rAnlo_PsOut_Minus15 : Pow er		<pre>interface_Xcvr1_FiberEth3: in out data port ; from SysML interface</pre>
	Power	T C	Power Power		<pre>interface_Xcvr1_FiberEth1: in out data port ; from SysML interface</pre>
	pwrAnlg_bandPAIn_Plus15 : Pow er pwrAnlg_BpOut_bandPA_Plus15 : Pow er				<pre>interface_Xcvr2_FiberEth6: in out data port ; from SysML interface</pre>
	Power pwrAnlg_IbandPA In_Minus15 : Power pwrAnlg_BpOut_IbandPA_Minus15 : Power				<pre>interface_1000BaseT_1: in out data port ; from SysML interface_100</pre>
	Power	-	pw rDgtl_Bpln_Plus3_4 : Pow er _ pw rDgtl_PsOut_Plus3_4 : Pow er	fdPS : DigitalPowerSupply	pwrDgtl_interfaceIn_Plus5_15: in feature ADS_Integrated_CNI_Model::Re
IbandPS:LBandPS		L	Power	J	interface 1000BaseKX 1: in out data port ; from SysML interface 10
ibaliurs. Ebaliurs	pw rDgtl_lbandPSin_Plus5_15 : Pow er pw rDgtl_BpOut_lbandPS_Plus5_15 : Pow er				interface_audio1_1394: in out data port ; from SysML interface_aud
	pw rDgtl_lbandPSIn_Minus5_15 : Pow er pw rDgtl_BpOut_lbandPS_Minus5_15 : Pow er	L r	pw rDgtl_Bpln_Plus5_15 : Pow er pw rDgtl_PsOut_Plus5_15 : Pow er		interface Xcvr2 FiberEth7: in out data port ; from SysML interface
	Power	-	Power	·	interface_i2c: feature group ; from SysML interface_i2c (9cc54f77-
	pwrDgtl_bandPSin_Plus3_4 : Pow er pwrDgtl_BpOut_lbandPS_Plus3_4 : Pow er		pw rDgtl_Bpln_Minus5_15 : Pow ergy rDgtl_PsOut_Minus5_15 : Pow er		interface_Xcvr1_FiberEth0: in out data port ; from SysML interface
	Power	r ·	Power	J	interface_lvds_rs232: in out data port ; from SysML interface_lvds
	pwrAnlg_lbandPSin_Plus9 : Pow er pwrAnlg_BpOut_lbandPS_Plus9 : Pow er		analisti Data Bhashi Damas analisti Datut Bhashi Damas		interface_1000BaseT_2: in out data port ; from SysML interface_100
	Power		pw rDgtl_Bpln_Plus9 : Pow er pw rDgtl_PsOut_Plus9 : Pow er		interface_1000BaseKX_2: in out data port ; from SysML interface_10
	pw rAnlg_bandPSIn_Plus15 : Pow er pw rAnlg_BpOut_bandPS_Plus15 : Pow er		Power		interface 1000BaseT_3: in out data port ; from SySML interface 100
	pw rAnlg_lbandPSIn_Minus15 : Pow er pw rAnlg_BpOut_lbandPS_Minus15 : Pow er	L r	pw rDgtl_Bpln_Plus 15 : Pow er pw rDgtl_PsOut_Plus 15 : Pow er		
	Power		Pow er		<pre>pwrDgtl_interfaceIn_Plus3_4: in feature ADS_Integrated_CNI_Model::Res</pre>
town of a Terror			pw rDgtl_Bpln_Minus15 : Pow er pw rDgtl_PsOut_Minus15 : Pow er		<pre>interface_Xcvr2_FiberEth5: in out data port ; from SysML interface</pre>
transceiver1: Transc	pw rDgtl_transciever1in_Plus5_15 : Pow er pw rDgtl_BpOut_amctr1_Plus5_15 : Pow er	- L	Power		properties
	Power	T			SEI::NetWeight => 1.2 kg;
	pw rDgtl_transciever1ln_Minus5_15 : Pow er pw rDgtl_BpOut_amctr1_Minus5_15 : Pow er				SEI::PowerBudget => 3.0 W applies to pwrDgtl_interfaceIn_Plus5_15;
	pwrDqtl transciever1In Plus3 4; Power pwrDqtl BpOut amctr1 Plus3 4; Power				<pre>SEI::PowerBudget => 3.0 W applies to pwrDgtl_interfaceIn_Plus3_4;</pre>
	pwrogi_cuilderer m_ndo_+ever pwrogi_dpodi_andir_ndo_4rower				SEI::WeightLimit => 2.0 kg;
	pwrAnlg_transciever1ln_Plus9: Power pwrAnlg_BpOut_amctr1_Plus9: Power				end Interface_Module;
	Power	7			

- 1. Begin with AADL tagged content (SysML).
- 2. Validate SysML before transform (OCL).
- 3. Execute Transform to AADL (CAMET).
- 4. Run analysis (OSATE2).
- 5. Read Analysis into model.

OBAL PRODUCT DATA


Computing Electrical Power for radioBackPlane			
Capacity: 40.0 W			
Supply: 109.0 W	3.0 W from	n faPS, 3.0	W from ra
Budget: 114.8 W	4.0 W for	transceiver	1, 3.5 W fo
** radioBackPlane power budget total 114.8 W exceeds capacity 40.0 W			
** budget total 114.8 W exceeds supply 109.0 W			


Important to Validate the SysML before the transform into AADL where errors can be difficult to debug.

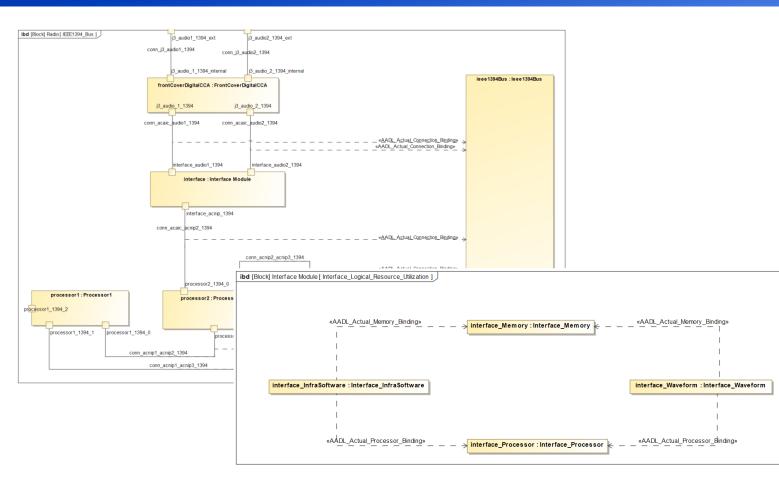
Logical Latency Analysis Example

Global Product Data Interoperability Summit | 2022

- Latency Analysis Requires both the connections and the underlying sequence to be modeled.
- The IBD communication can contain more internal wiring at different levels of abstraction.
- Sequences Contain as Source, N Flow diagrams and a Skink Sequence Diagram.
- Sequence Lifelines can reference other Sequence Diagrams to handle abstraction levels.

Latency results for er	nd-to-end	now Aircr	ansystem	_⊢low' of s	system 'All	crattSyste	m.impl [.]					
Result	Min Speci	Min Actua	Min Meth	Max Spec	: Max Actu	a Max Meth	Comment	s				
device mission_Compu	1.0ms	1.0ms	specified	5.0ms	5.0ms	specified						
(bus digital_backbone)	0.0ms	0.0ms	queued	0.0ms	0.0ms	queued	Ignoring q	ueuing tim	e of 0.0ms			
(bus digital_backbone)	0.0ms	0.0ms	sampling p	0.0ms	0.0ms	sampling p	protocol/bus	3				
connection mission_Co	2.0ms	2.0ms	specified	10.0ms	10.0ms	specified	Using spec	Using ma	x specified	protocol	latency sub	ototal 0.0 alt
process Communication	20.0ms	20.0ms	specified	100.0ms	100.0ms	specified						
connection Communica	3.0ms	3.0ms	specified	15.0ms	15.0ms	specified	Using spec	Using ma	x specified	protocol	latency sub	ototal 0.0 alt
device mission_Compu	1.0ms	1.0ms	specified	4.0ms	4.0ms	specified						
Latency Total	22.0ms	27.0ms		109.0ms	134.0ms							
Specified End To End L	atency	100.0ms			500.0ms							
End To End Latency	Summary											
WARNING	Minimum s	pecified flo	w latency t	otal 22.0m	s less than	expected n	ninimum en	d to end la	atency 100	0ms (bet	ter respons	se time)
WARNING												response ti
INFO						to expecte						

Latency flows across multiple levels of abstraction.


Logical Resource Analysis Example

Global Product Data Interoperability Summit | 2022

OBAL PRODUCT DATA

NTEROPERABILITY

Detailed V	Vor <mark>klo</mark> ad R	eport: for	Processor	Communic	ations_Syst
Compone	Budget	Actual			
process Co	83.000 M	0.000 MIP	process Ai	rcraftSyste	m_impl_In
process Co	1.987 GIP	0.000 MIP	process Ai	rcraftSyste	m_impl_In
Total		2.070 GIPS	5		

Detailed V	Vor <mark>klo</mark> ad R	eport: for	memory C	ommunica	itions_Syst	em.freedo	m570.pro
Compone	Budget	Actual					
Communi	120000.0	120000.0	No actual.	Added bu	dget to tot	al.	
Communi	1393000.	1393000.0	No actual.	Added bu	dget to tot	al.	
Total		1513000.0	000 KByte				

Resource Analysis primarily deals with the allocation of software to hardware and the resources necessary to successfully host that software.

It also deal with the throughput associated with a bus for bus loading analysis.

Communication Ports are allocated to Data Buses and Software to Processors and Memory.

Logical Weight Analysis Example

NORTHROP GRUMMAN

Global Product Data Interoperability Summit | 2022

- Weight Limits are assigned to System and Device Block.
- If a weigh limit is specified it will use the cumulative weight of all internal blocks.
- Analysis also indicates where slack is and if no weight was entered for a block (System or Device).
- Each element in the decomposition chain can have a limit and its own weight.

⊑ C Systems (by m42727)
E 7 Relations
External_Systems (by m42727)
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
E → Relations
E-Communications_System (by m42727)
E Relations
Commssystem_flow_latency_budget (by m42727)
Communication_System_GrossWeight (by m42727)
Communication_System_Weight_Limit (by m42727)
CommsSystem_Flow (by m42727)
P vuSubsystem : FVL_CNI::20. Logical View::Logical Elements
🕞 freedom570 : FVL_CNI::20. Logical View::Logical Elements:
🖻 backUpRadio : FVL_CNI::20. Logical View::Logical Elements
📴 icsVoip_Subsystem : FVL_CNI::20. Logical View::Logical Ele
🕞 fiberEthernetBus : FVL_CNI::20. Logical View::Logical Eleme
p_comms_system_in : AADL_Profile::AADL_Data_Port
p_comms_system_out : AADL_Profile::AADL_Data_Port

Warning! ds101Bus: [L] No net weight plus subcomponent weight or no gross weight Warning! antenna System: [L] No net weight plus subcomponent weight or no gross weight Warning! mission Computer: [L] No net weight plus subcomponent weight or no gross weight Warning! gpsIns System: [L] No net weight plus subcomponent weight or no gross weight Warning! backUpRadio: [L] No net weight plus subcomponent weight or no gross weight Warning! vuSubsystem: [L] No net weight plus subcomponent weight or no gross weight Warning! icsVoip Subsystem: [L] No net weight plus subcomponent weight or no gross weight Warning! rfSubsystem: [L] No net weight plus subcomponent weight or no gross weight frontCoverDigitalCCA: [L] Sum of weights / gross weight is 0.050 kg (no limit specified) IbandPA: [L] Sum of weights / gross weight is 0.100 kg (no limit specified) transceiver4: [A] Sum of weights (1.200 kg) is below weight limit of 2.000 kg (40.0 % Weight slack) transceiver3: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) processor2: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) transceiver2: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) processor1: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) interface: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) transceiver1: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) processor3: [A] Sum of weights (1.350 kg) is below weight limit of 2.000 kg (32.5 % Weight slack) IbandPS: [L] Sum of weights / gross weight is 0.100 kg (no limit specified) ERROR: freedom570: [A] Sum of weights (17.300 kg) exceeds weight limit of 9.900 kg Communications System: [L] Sum of weights / gross weight is 17.350 kg (no limit specified) AircraftSystem impl Instance: [L] Sum of weights / gross weight is 17.400 kg (no limit specified)

Weight analysis can be done at multiple levels, all rolling up.

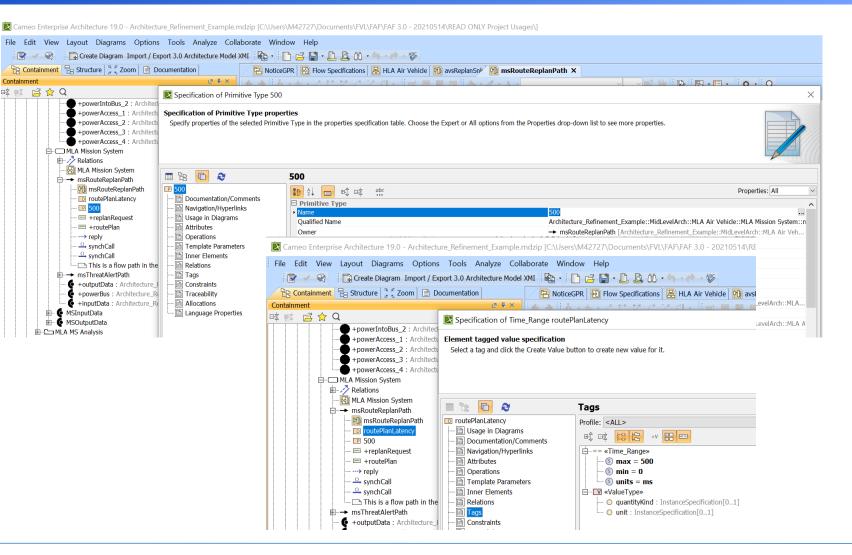
Round Trip Results Back To Requirement

Global Product Data Interoperability Summit | 2022

- Analysis is imported back into the model.
- Simple macros to import and then create appropriate elements in the domain of discourse.
- Results are populated in the general RTM table.

#	Id	Text		Analysis Status	NonFunctional	Functional Trace	Use Cases	Key Interfaces	Logical Systems
	10	104			Trace				
	•		R Proximity Cluster			System Resource			AircraftSystem
1 F\	VL-PS_67	The System shall XXXX.							
			🖹 Payload Weight Burn				-	IF-AircraftSystemsMonitoring IF-AirGroundRadioCommunic	
2 F\	VL-PS_35.1	The System shall XXXX.							AircraftSysten
			Bandwidth On Demand S			E Implement Com	-	IF-AirGroundRadioCommunic IF-AircraftSystemsMonitoringS	
3 F\	VL-PS_35	The System shall XXXX.				B Monitor Commu		 IF-AreasOfInterestService IF-SystemTimeService IF-TacticalDataLink-ARC-220 	AircraftSyster
4 FV	VL-PS_63	The System shall XXXX.	🚸 Aircraft Weight Test	Aircraft Weight Test:02/07/2022	AircraftSystem				

Analysis and Analysis Results are Tied into the Domain of Discourse


Issue: A Block For All 500 Data Values Or Duplicate 500 Blocks

Global Product Data Interoperability Summit | 2022

- Take from the example provided to the right. We can see that the example uses the block name for the value while other "routePlanLatency" allow for the entry into the tagged value directly.
- To be enable automation and simplicity of rule checking these need to be consistent.
- Neither duplicate blocks named 500 or pointing all analysis at this one 500 block are appropriate, hence the tagged value approach is preferred.

OBAL PRODUCT DATA

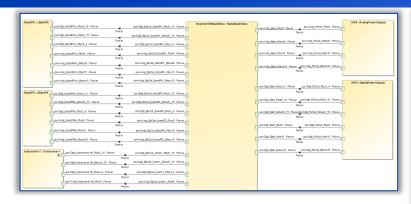
NTEROPERABILITY

Issue Resolution: AADL_SEI_Profile, CAMET & Python

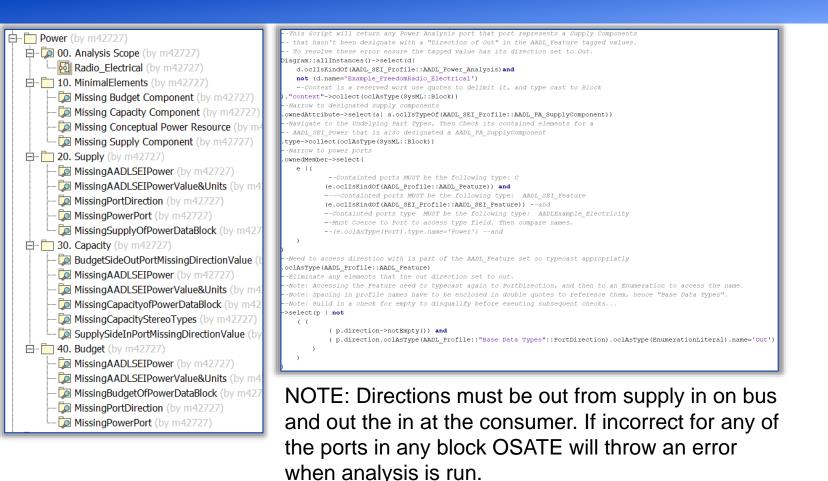
Global Product Data Interoperability Summit | 2022

- CAMET will parse any stereotypes beginning with AADL_, base AADL profile inherited to AADL_SEI types that allow tagged value entry (In most recent version of CAMET this profile is now provided)
- Output will have fields and brackets such as shown here.
- Post CAMET transform add in of a python scripts to remove extra characters.

```
conn_vusubsystem_fiber_eth0: port freedom570.j9_acaic_FiberEth0_ext <-> icsVoip_Subsystem.j9_icsvoip_
flows
    CommsSystem_Flow: flow path
    p_comms_system_in ->
        conn_fvlcomms_freedom570 ->
        freedom570.Radio_Flow ->
        conn_freedom570_fvlcomms ->
        p_comms_system_out; -- from SysML CommsSystem_Flow (4e4d1c0e-a17f-4e8f-8233-33f2a26c8f76)
properties
    SEI::BandWidthBudget => [rate => 7.7; units => KBytesps; ] applies to conn_vusubsystem_fiber_eth0;
    Latency => 80 ms .. 400 ms applies to CommsSystem_Flow;
end Communications_System.impl;
```


<pre>conn_freedom570_fvlcomms: port free</pre>	mms_system_in -> freedom570.p_freedom570_in; from SysML conn_f dom570.p_freedom570_out -> p_comms_system_out; from SysML conn reedom570.j9_acaic_FiberEth0_ext <-> icsVoip_Subsystem.j9_icsvoip
<pre>conn_fvlcomms_freedom570 -> freedom570.Radio Flow -></pre>	
<pre>conn_freedom570_fvlcomms -></pre>	
p_comms_system_out; from SysM properties	<pre>IL CommsSystem_Flow (4e4d1c0e-a17f-4e8f-8233-33f2a26c8f76)</pre>
SEI::BandWidthBudget => 7.7 KBytesps	<pre>applies to conn_vusubsystem_fiber_eth0;</pre>
Latency => 80 ms 400 ms applies t end Communications_System.impl;	o CommsSystem_Flow;

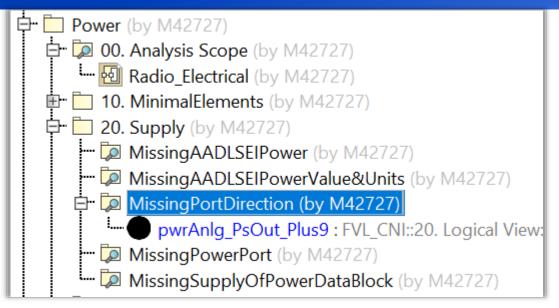
Issue: What To Do When Failures Occur?


NORTHROP GRUMMAN

Global Product Data Interoperability Summit | 2022

As Errors were encountered in CAMET or OSATE, OCL Rules were constructed to ensure SysML had needed data / elements. In this example the rule to ensure port directions are set correctly is examined.

NTEROPERABILITY



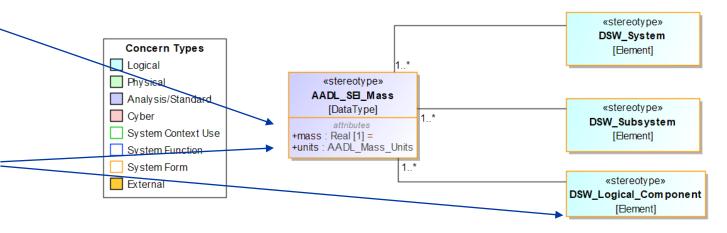
OCL ensures data in SysML is valid and complete, to know your transform and analysis will work.

Issue Resolution: OCL As A Search Tool

Global Product Data Interoperability Summit | 2022

The OCL Query on the right when used in the smart package can identify ports from the previous diagram with the incorrect value type. The context is important and relies on a clear understanding of the Domain of Discourse as well as the SysML/UML relations.

--This Script will return any Power Analysis port that port represents a Supply Components -- that hasn't been designate with a "Direction of Out" in the AADL Feature tagged values. -- To resolve these error ensure the tagged value has its direction set to Out. Diagram::allInstances()->select(d| d.oclIsKindOf(AADL_SEI_Profile::AADL_Power_Analysis)and not (d.name='Example_FreedomRadio_Electrical') --Context is a reserved work use quotes to delimit it, and type cast to Block)."context"->collect(oclAsType(SysML::Block)) --Narrow to designated supply components .ownedAttribute->select(a| a.oclIsTypeOf(AADL_SEI_Profile::AADL_PA_SupplyComponent)) --Navigate to the Undelying Part Types, Then Check its contained elements for a -- AADL_SEI_Power that is also designated a AADL_PA_SupplyComponent .type->collect(oclAsType(SysML::Block)) --Narrow to power ports .ownedMember->select(e |(--Containted ports MUST be the following type: C (e.oclIsKindOf(AADL Profile::AADL Feature)) and ----Containted ports MUST be the following type: AADL SEI Feature (e.oclIsKindOf(AADL_SEI_Profile::AADL_SEI_Feature)) --and --Containted ports type MUST be the following type: AADLExample_Electricity --Must Coerce to Port to access type field. Then compare names. --(e.oclAsType(Port).type.name='Power') --and --Need to access direstion with is part of the AADL Feature set so typecast appropriatly .oclAsType(AADL Profile::AADL Feature) Eliminate any elements that the out direction set to out. --Note: Accessing the Feature need to typecast again to PortDirection, and then to an Enumeration to access the name. --Note: Spacing in profile names have to be enclosed in double quotes to reference them, hence "Base Data Types". --Note: Build in a check for empty to disqualify before exeuting subsequent checks... ->select(p | not (((p.direction->notEmpty()) and (p.direction.oclAsType(AADL Profile::"Base Data Types"::PortDirection).oclAsType(EnumerationLiteral).name='Out')


Queries build on one another to add context and identify elements that result in broken AADL generation.

Extending Concepts To Other Types Of Analysis

- Different types of Analysis need data defined differently, this can be represented and extended as more types of analysis are required.
- The Domain of Discourse of extended to incorporate both the format of required data but also its location to elements.

Logical Mass Analysis Example

• These relations are encoded into OCL, enabling automated enforcement that guarantees logical element without a mass would be flagged. This prevents data errors when exporting to an underlying analysis engine (R, AFSIM or AADL)

All Analysis Algorithms require data and data structures.