# Analysis Digital Twin

Marcus Richardson



Approved for Public Release 22-174266-ETT



Global Product Data Interoperability Summit | 2022



Marcus Richardson is an Interoperability Standards Analysis and Simulation engineer for The Boeing Company. In this role he develops and evaluates standards for physics modeling and scientific analysis. Prior to this role he was developing thermodynamic / fluid modeling libraries and pathfinders for the preliminary design of aircraft and developing lab test verification methods and fixtures.



#### Abstract

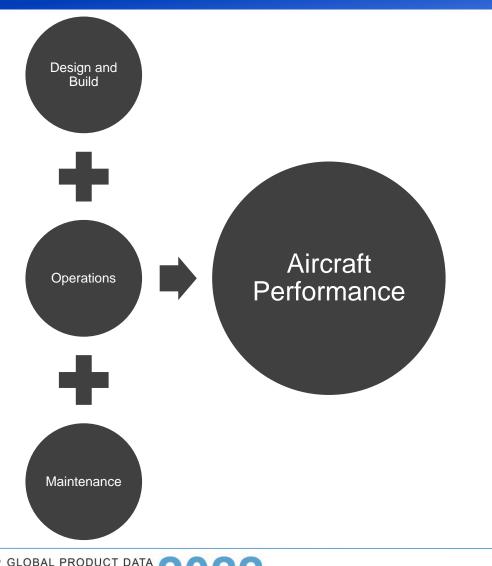
Global Product Data Interoperability Summit | 2022

Digital twins require particularization to ensure their usefulness. One particularization, the analysis digital twin, offers access to digital knowledge of the behavior of a product or system. It answers questions that product developers have regarding the actual performance of their designs and has potential to aid customers and users with an advanced, simulator-like experience to enhance their learning and familiarity with the expected behavior of the product. Lack of maturity in the analysis standards may lead to a finicky analysis digital twins that cannot be debugged without the original authoring software and model developers. This presentation presents a mental model for an analysis digital twin that outlines the critical model interfaces for analysis standards, which standards would apply the best and what gaps exist relevant to the use case of the mental model. The mental model is based on an actual aircraft problem, which, due to the large time scales of the operational and maintenance problems, lends itself very well to simulation the aircraft data to tune that simulation – creating a digital twin. The presentation will propose concepts that need to be developed further into standards to make such a digital twin, a robust and trainable simulation model, a reality.



Global Product Data Interoperability Summit | 2022

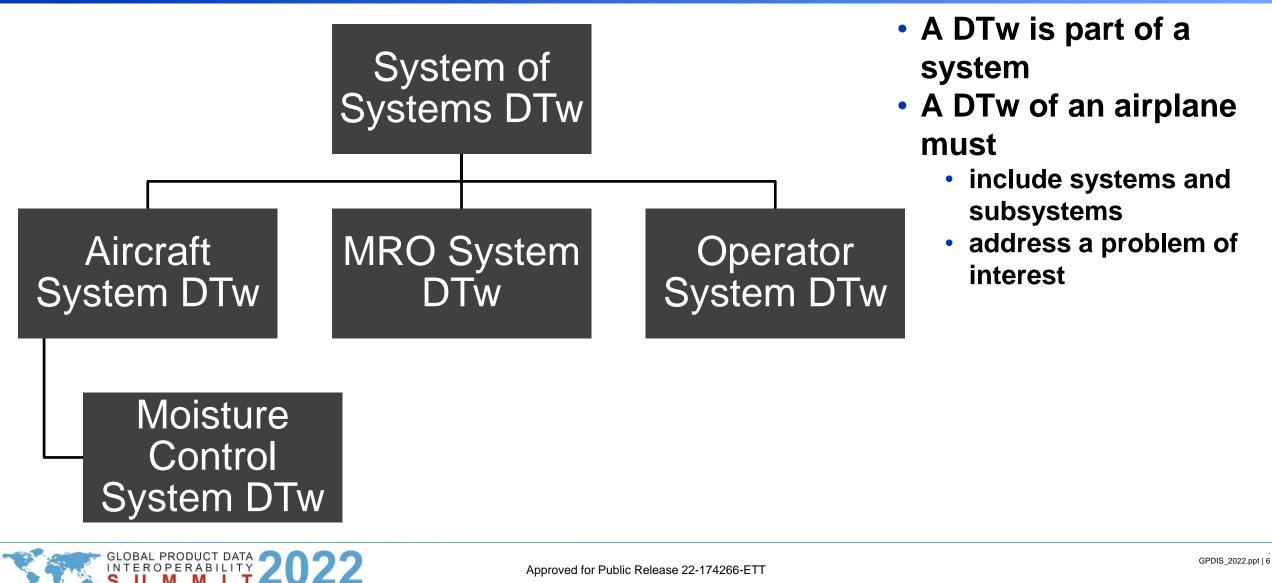
The concept of a digital twin has become commonplace in the aerospace industry. It offers the hope of creating value from seemingly insignificant data by enabling prediction and optimization of the performance of a product or process.


This presentation seeks to:

- Spur interest in a more detailed discussion of DTws, getting it closer to an implementable level
- Connect DTw business problems with DTw architecture



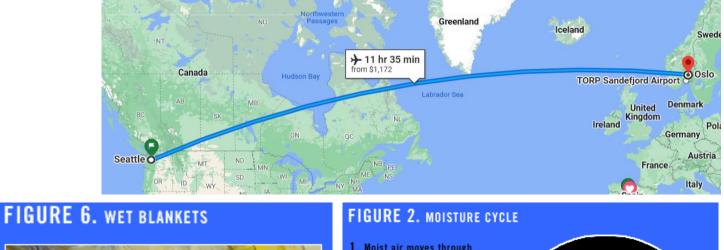
# The General Challenge – Design, Operations and Maintenance


Global Product Data Interoperability Summit | 2022



The ability of aircraft to perform according to specification depend on the alignment of its design with its operations and maintenance

Each activity is executed by a different entity, in this case the manufacturer, airline, and the maintenance, repair and overhaul (MRO) companies.


# **System of Systems Perspective**



#### The Specific Challenge – Controlling Moisture in Commercial Airplanes

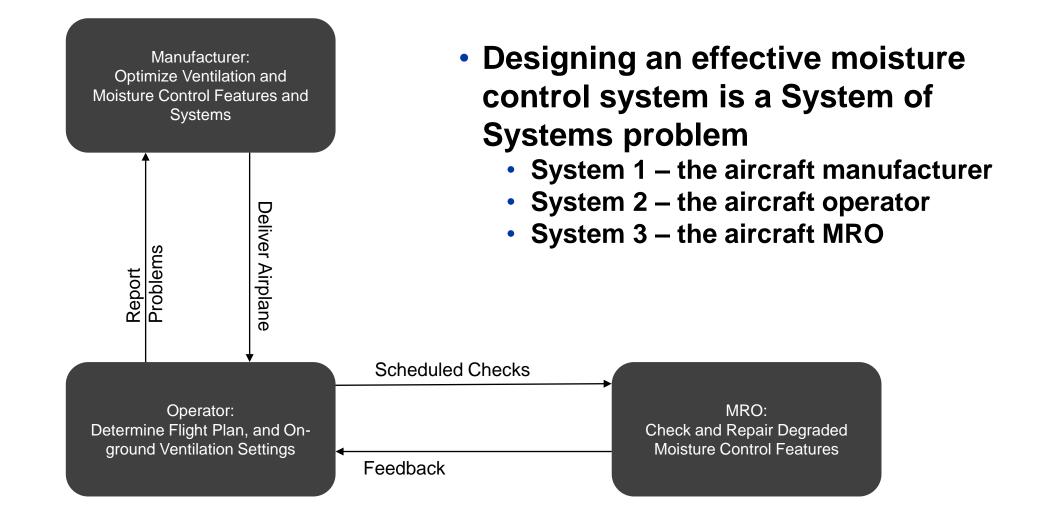
Global Product Data Interoperability Summit | 2022

- Aircraft passengers sometimes experience an issue known as "rain in the plane" where water drips from stowage bins onto the passenger during takeoff maneuvers
- This issue is caused by uncontrolled moisture that generates on cold structure during flight
- It is a particular problem for cold weather operators and long flights
- Controlling moisture is important for much more than just passenger comfort though
- Moisture builds up over long time scales (weeks and months)





Ref: https://www.boeing.com/commercial/aeromagazine/aero\_05/textonly/m01txt.html


#### **Moisture Control Factors**

Global Product Data Interoperability Summit | 2022

GLOBAL PRODUCT DATA INTEROPERABILITY S U M M I T 2022

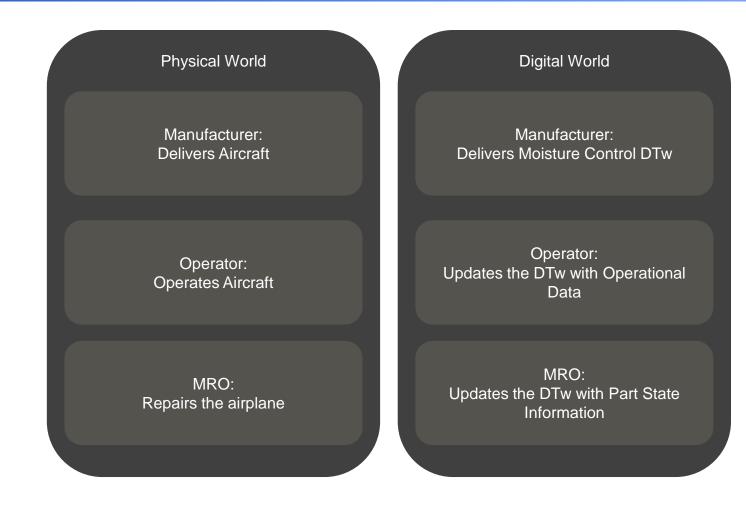
| Category                                 | Factor                                                     | Effect                                                                                                                                                                                                              | FIGURE 7. MOISTURE CONTROL SYSTEM                                                       |  |  |
|------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Airplane<br>Design<br>/Configuratio<br>n | Seating density                                            | More people produce more moisture, causing higher cabin humidity levels and increased condensation rates.                                                                                                           | Water management<br>and absorbent material<br>Air-conditioning Insulation               |  |  |
|                                          | Insulation design                                          | An insulation design that minimizes gaps will reduce condensation rates.                                                                                                                                            | system                                                                                  |  |  |
|                                          | Air-conditioning<br>system design                          | The amount of outside air per occupant supplied to the airplane affects the in-flight humidity level. Increasing the outside air per occupant decreases the cabin humidity, which decreases the condensation rates. |                                                                                         |  |  |
| Airplane<br>Operations                   | Load factor                                                | More people produce more moisture, causing higher cabin humidity levels and increased condensation rates.                                                                                                           | Structural drainage<br>and corrosion prevention                                         |  |  |
|                                          | Utilization rate (hours per day the airplane is operating) | High airplane-utilization rates result in more time during which the structure is below the dew point and subject to greater accumulations of frost on a daily basis.                                               | Liquid water<br>management Root cause                                                   |  |  |
| Environment                              | Air-conditioning system operation                          | For airplanes with overhead recirculation fans, operating these fans or air-conditioning packs on the ground will help dry out the crown space.                                                                     | Ref:<br>https://www.boeing.com/commercial/aeromagazine/aero_0<br>5/textonly/m01txt.html |  |  |
|                                          | Outside temperature                                        | Colder structure temperatures cause higher condensation rates. Colder structure temperatures on the ground inhibit the evaporation of moisture from wet insulation.                                                 |                                                                                         |  |  |
|                                          | Outside Humidity                                           | Dictates whether a ground cart or APU operations are recommended                                                                                                                                                    |                                                                                         |  |  |
| Maintenance                              | Insulation blanket installation                            | Gaps in insulation coverage created during maintenance can increase condensation rates. Damage to insulation cover material can increase moisture problems with wet insulation.                                     |                                                                                         |  |  |
|                                          | Use of ground-based forced-air systems                     | Ground-based forced-air systems can be useful for drying airplanes parked for extended periods.                                                                                                                     |                                                                                         |  |  |

#### **Controlling Moisture – Design, Operations and Maintenance**





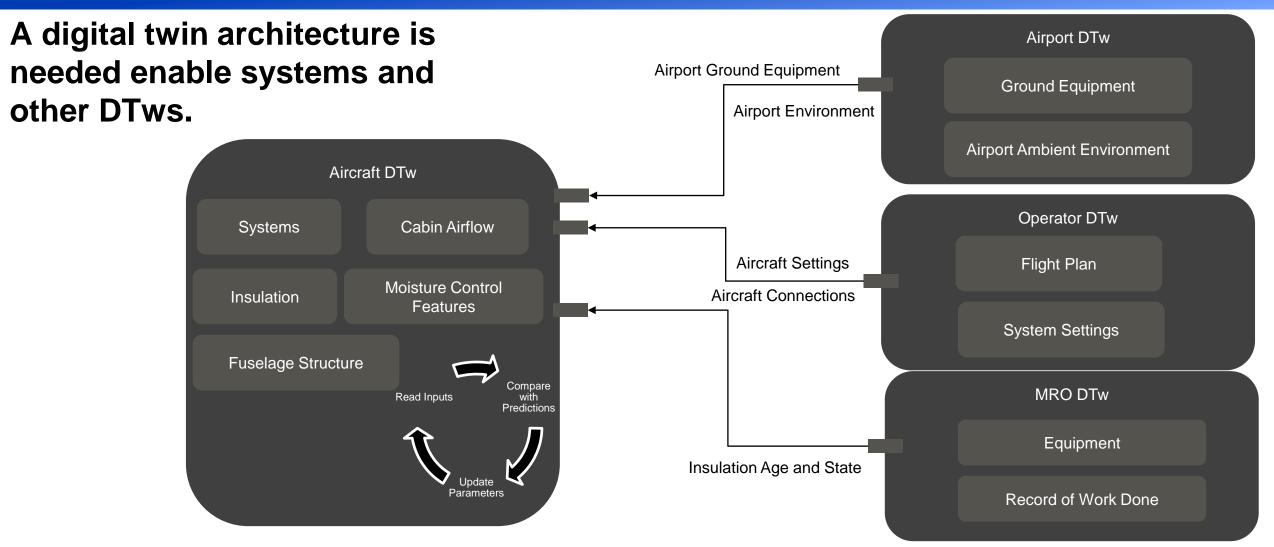
#### **Moisture Control Digital Twin Goals**


- Inform ground operations with airplane specific historical data
- Enable automated maintenance predictions
- Collect data to drive product improvements recommendations
- Create feedback loop from maintenance records to the design and operations models



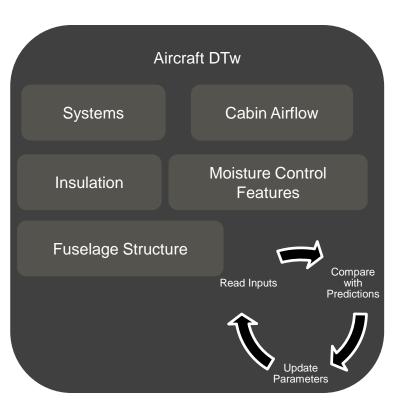


# Setting up the Digital Twin Solution


- Moisture control system design
  - requires assuming a customer usage profile with many variables
- Moisture control system operation
  - May deviate from that profile, increasing or decreasing the maintenance
- Moisture control system
  maintenance records
  - Are currently not used to inform manufacturer simulations (no model feedback)



#### **The Moisture Control DTw System Architecture**


Global Product Data Interoperability Summit | 2022

SLOBAL PRODUCT DATA



#### **Aircraft DTw Models**

Global Product Data Interoperability Summit | 2022



Systems: Cooling, Heating and Ventilation System Behavioral Models

Tracks airflow and heat

Standards: Modelica® Language

Insulation: Finite Element Analysis Heat and Mass Transfer Models

Tracks water absorption and distribution

Standards: ISO10303-209 Modelica® Language Fuselage Structure: Structural Thermal Response

Predicts structure temperatures

Standards: Modelica® Language Cabin Airflow: Airflow distribution Behavioral Model

Tracks ventilation flow paths within the pressurized volume, humidity, and condensation rates

> Standards: Modelica® Language

Moisture Control Features: Drainage Control Paths Behavioral Models

Track water drainage

Standards: Modelica® Language



# The Moisture Control DTw Sourcing Architecture

- A collaboratively developed architecture creates a modeling infrastructure for service and product owners to connect their own models
- Following our example:
  - The airport produces a local weather and ground services model
  - The operator creates a route and ground operations model
  - The MRO supplies a detailed record of part serial numbers, findings and repairs

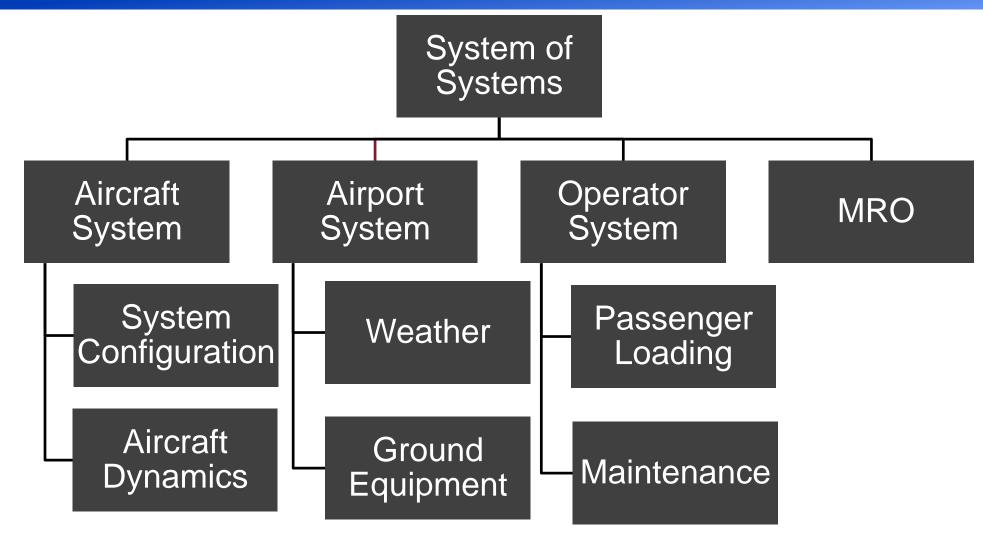


#### **Effects of the Digital on the Physical**

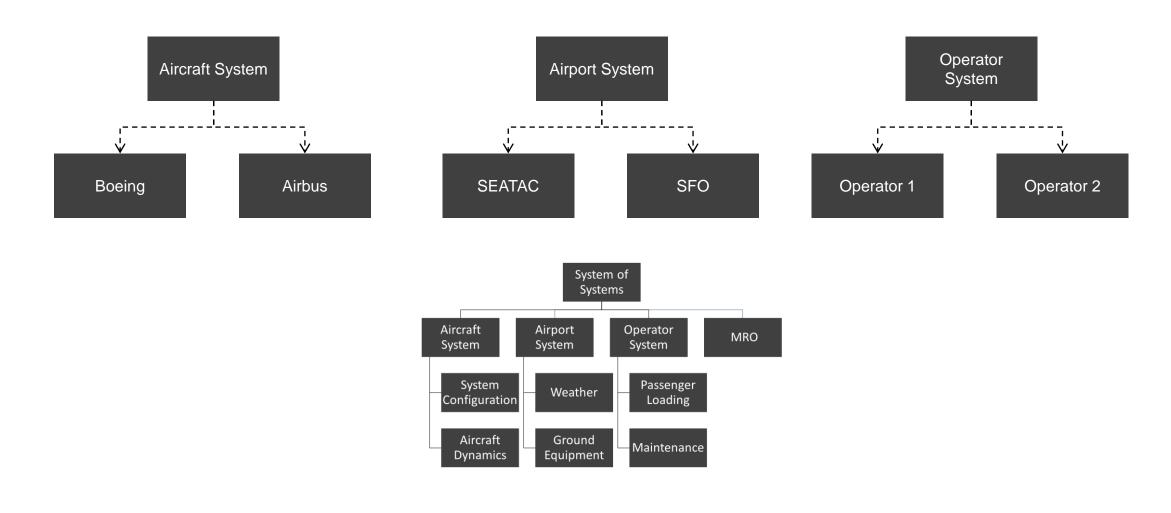
- As the twin gets developed, it may drive the addition of sensing hardware on the physical platform (i.e. humidity sensors)
- What else can I do with that data?
- Will the digital data drive customers to change their operational procedures or manufacturers to alter their designs?
- Does access to a digital twin by manufacturers and operators lead to enhanced airplane requirements?



#### The Moisture Control DTw Standards Architecture


- At a minimum
  - the standards at the data interfaces must be defined
  - the interface data must be controlled by an interface control spec
- Optimally
  - the model language, inputs and outputs within each model of the digital twin would comply with available standards like Modelica® and ISO10303-209
  - The framework of the system of systems would comply with context and framework standards like MoSSEC (ISO 10303-243), OMG's Product Knowledge Framework, and OMG's Ontology
  - Each DTw would comply with the same fundamental standards as the system of systems

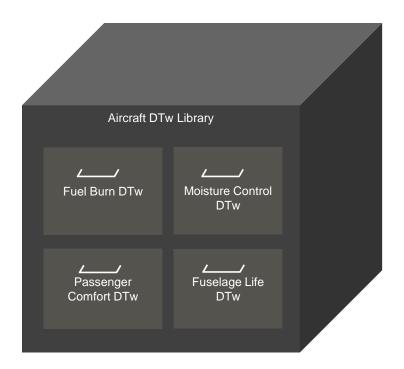



#### **Generalized Model Structure**

Global Product Data Interoperability Summit | 2022

GLOBAL PRODUCT DATA INTEROPERABILITY GLOBAL PRODUCT DATA INTEROPERABILITY GLOBAL PRODUCT DATA




#### **Model Instantiation Examples**





# **Expanding the Vision**

- Moisture Control is one small opportunity for analysis DTws to
  - make operators more efficient
  - improve manufacturer design requirements
  - increase the value of the each individual aircraft

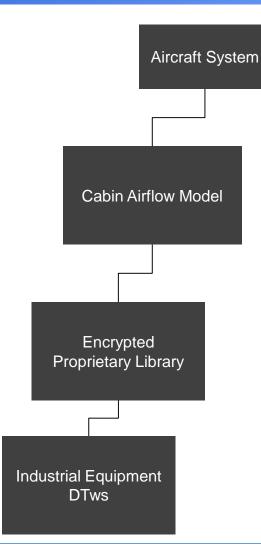




# **Digital Twin Capabilities (OMG DTC)**

Global Product Data Interoperability Summit | 2022

| 1<br>Data Acquisition &<br>Ingestion                                             | 9<br>Synthetic Data<br>Generation           | 17<br>Enterprise System<br>Integration | 23<br>Edge AI & Intelligence       | 29<br>Prediction                    |                                               | 39<br>Basic Visualization                         | 45<br>Dashboards                     |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------|--|--|
| <b>2</b><br>Data<br>Streaming                                                    | 10<br>Ontology<br>Management                | 18<br>Eng. System<br>Integration       | 24<br>Command & Control            | 30<br>Machine Learning<br>ML        |                                               | 40<br>Advanced<br>Visualization                   | 46<br>Continuous<br>Intelligence     |  |  |
| 3<br>Data<br>Transformation                                                      | 11<br>Digital Twin (DT)<br>Model Repository | 19<br>OT/IoT System<br>Integration     | 25<br>Orchestration                | 31<br>Artificial Intelligence<br>Al | 35<br>Prescriptive<br>Recommendations         | 41<br>Real-time Monitoring                        | 47<br>Business Intelligence          |  |  |
| 4<br>Data<br>Contextualization                                                   | 12<br>DT Instance<br>Repository             | 20<br>Digital Twin<br>Integration      | 26<br>Alerts & Notifications       | 32<br>Federated Learning            | 36<br>Business Rules                          | <b>42</b><br>Entity Relationship<br>Visualization | 48<br>BPM & Workflow                 |  |  |
| 5<br>Batch Processing                                                            | 13<br>Temporal Data Store                   | 21<br>Collab Platform<br>Integration   | 27<br>Reporting                    | 33<br>Simulation                    | 37<br>Distributed Ledger &<br>Smart Contracts | 43<br>Augmented Reality<br>AR                     | 49<br>Gaming Engine<br>Visualization |  |  |
| 6<br>Real-time Processing                                                        | 14<br>Data Storage &<br>Archive Services    | 22<br>API Services                     | 28<br>Data Analysis &<br>Analytics | 34<br>Mathematical<br>Analytics     | 38<br>Composition                             | 44<br>Virtual Reality VR                          | 50<br>3D Rendering                   |  |  |
| <b>7</b><br>Data PubSub Push                                                     | 15<br>Simulation Model<br>Repository        | 52<br>Device Management                | 54<br>Event Logging                | 56<br>Data Encryption               | 58<br>Security                                | 60<br>Safety                                      | 51<br>Gamification                   |  |  |
| 8<br>Data Aggregation                                                            | 16<br>Al Model Repository                   | 53<br>System Monitoring                | 54<br>Data Governance              | 57<br>Device Security               | 59<br>Privacy                                 | 61<br>Reliability                                 | 62<br>Resilience                     |  |  |
| O Data Services O Integration O Intelligence O UX O Management O Trustworthiness |                                             |                                        |                                    |                                     |                                               |                                                   |                                      |  |  |


OMG Digital Twin Consortium Capabilities Periodic Table

2022

GLOBAL PRODUCT DATA

#### **Open Model Architecture**

- Architecture reveals as much as maintenance documents
- System performance descriptions are replaced with models
- Models that encrypt critical data





#### **Open Architecture Challenges**

- Contracts
- IP
- Loss of Data control



#### Thank you for listening!

Global Product Data Interoperability Summit | 2022

Questions / Feedback

#### Contact me if you would like to chat or collaborate

- marcus.k.Richardson@boeing.com
- https://www.linkedin.com/in/marcus-richardson-pe-5919237

