Recent Developments in the Harmonization of ISO 10303 STEP and ASME Y14.37 Composite Material Standards

Keith A. Hunten, P.E.

Presenters Bio

- 35 years experience in the Aerospace industry
 - GD/FW-Lockheed-Lockheed Martin
 - Developed and applied composite material structural analysis, design, and design synthesis tools for military aircraft
 - F-111, F-16, F-16XL, ATF/YF-22, F-22, various Skunk Works projects
 - Retired from Skunk Works end of 2013
- Participated in the ISO 10303-STEP standard since 1987
 - Initially focused on Engineering Analysis
 - Convener of WG12 since early 2000's
 - Initially led the Integrated Resources development
 - Now responsible for overall 10303 STEP development (WG12) and maintenance (WG21)
- Led the PDES Application Protocols for Composites (PAS-C) AP209 effort
 - Focused on Engineering Analysis of composite structures
- Since retirement have consulted on updating the composites aspects of 10303 and running ISO TC184 SC4/WG12 and WG21 (STEP standardization and support)

Overview of Presentation

- History of the 10303 STEP composite material standardization development in the PAS-C program
- Initial harmonization efforts between ISO 10303 and ASME Y14.37 standards and LOTAR/CAx-IF testing uncovered the need for:
 - Additional Rosette types, and ply/part boundary and shape representations
 - Recommended practices development and update
- Further joint LOTAR/ISO/ASME composite team specification and implementation of 10303 Limited Length or Area Indicator (LLAI) capabilities
- Future work on propagating 10303 composites capabilities from 10303-242 Mechanical Design and PLM to 10303-238 Manufacturing

History of the 10303 STEP composite material standardization development in the PAS-C program

Global Product Data Interoperability Summit | 2023

- PDES Application Suite for Composites (PAS-C) started in 1991
 - Initially funded by Manufacturing Technology Directorate at the Air Force Research Laboratory
 - Initial aim was supporting B-2 and F-22
- PAS-C focused on reducing the cost of composite aircraft components through the use of concurrent engineering practices enabled by standardized product information
- Three Application Protocols were envisioned:
 - AP209 for Engineering Analysis, Composites
 - AP222 for Manufacturing (uncompleted)
 - AP232 for Technical Data Package

WL-TR-8034

PDES APPLICATION PROTOCOL SUITE FOR COMPOSITES (PAS-C) BENEFITS ANALYSIS

South Carolina Research Authority (SCRA) 5900 International Boulevard North Charleston, SC 29418

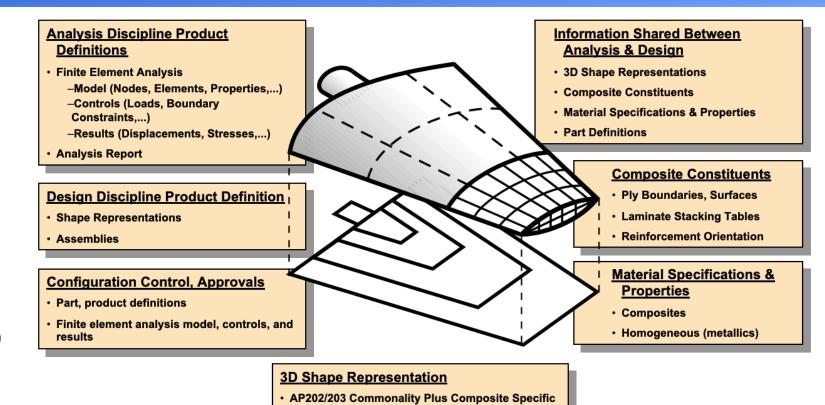
January 1997

Final Report for the Period 02 July 1991 - 31 January 1997

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PHO CHART ICELANDA

MANUFACTURING TECHNOLOGY DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7739


19970819 031

10303-209 (AP209) Focused on Engineering Analysis and Composite Product Definitions

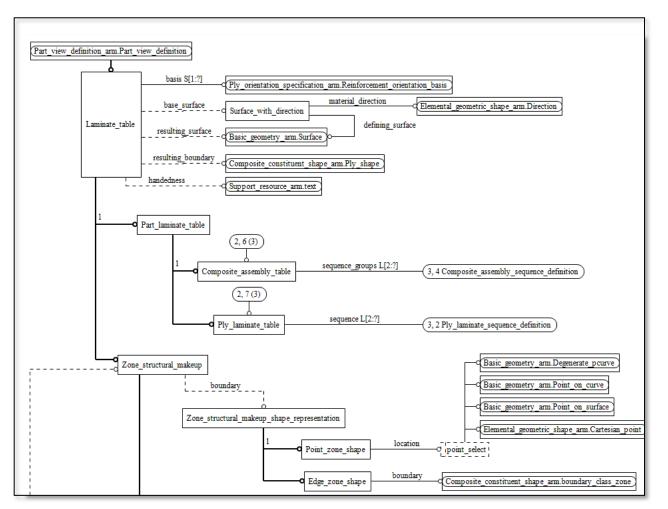
Global Product Data Interoperability Summit | 2023

- Added the Engineering Analysis product definition information to that of AP203 (Later AP242)
- Traditional 2D composite constituents, laminate tables and materials
- A full 3D representation of composite laminations (plies) was a first
- Initial Draft International Standard (DIS) in 1996, final International Standard (IS) in 2000

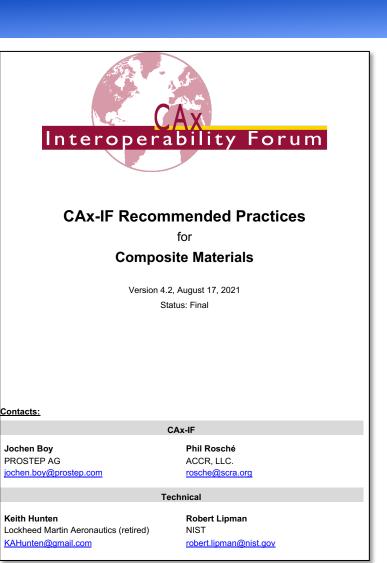
3D Shapes

- Advanced B-Representation

Wireframe & Surface without Topology
 Wireframe Geometry with Topology


- Composite Constituent Shape Representation

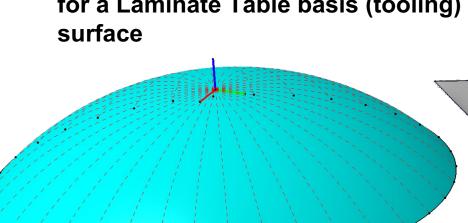
Faceted B-Representation
 Manifold Surfaces With Topology

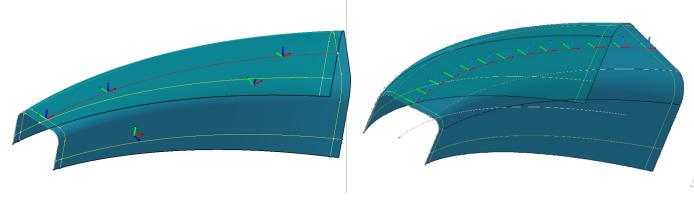

The Core Information Model for Composite Product Data is Now Shared across the 10303 STEP Standard

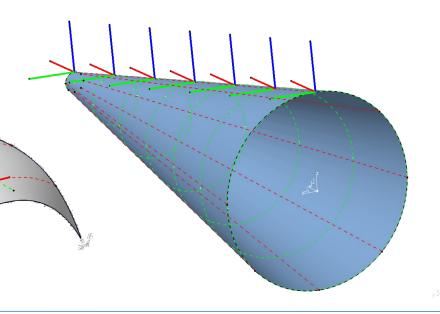
- The ISO 10303 Laminate Table is broken down into three major Subtypes
 - A Composite assembly table comprised of traditional 3D shape representations that may be non-laminated parts combined with 2D/3D laminated composites
 - A Ply Laminate Table for traditional plybased composite parts
 - A Zone Structural Makeup for either designoriented part specifications or specialized analysis-oriented specifications

Initial harmonization efforts between ISO 10303 and ASME Y14.37 standards and LOTAR/CAx-IF testing uncovered several needs

- Additional Rosette types, and ply/part boundary and shape representations were added
 - Additions reflect design and manufacturing practices that had evolved since the initial 10303 publication in 2000
- Recommended practices for implementors were updated to reflect the new additions
 - Based upon input from CAX-IF testing and Dassault implementations
 - Provides detailed instantiation recommendations

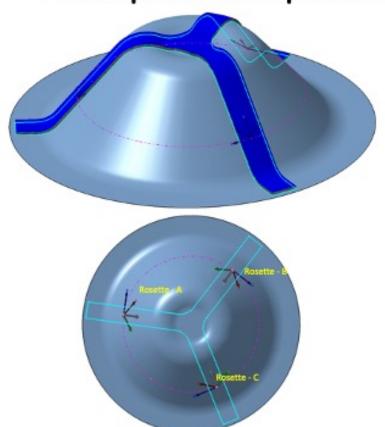

New Rosette Types Added to Reflect Recent Design and Manufacturing Practices


Global Product Data Interoperability Summit | 2023



 Rosettes are coordinate frames used to orient the fibers in a ply

 A Cartesian coordinate frame is always used as the origin direction specification for a Laminate Table basis (tooling)

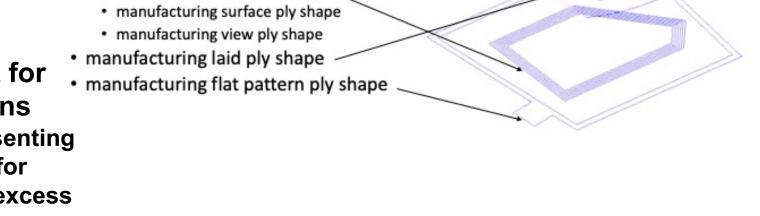


Multiple Rosettes were Added to Reflect Very Complex Curved Part Specification Requirements

Global Product Data Interoperability Summit | 2023

Example: Multiple Rosettes for a Laminate Table

eguence	Part Number	Phen Group	Sequence	Phy/Core	Material ID	Orientation	Rosette
a span ica	ASME Y14.37			Lift core	- Marie and	name	eranna.
	3-Diade	BOND					
1	Example	ASSEMBLY	PLY-LEVEL 1	PLY.P1	10721	0	Rosette - A
	ASME Y14.37					_	
	3-Diade	BOND					
2	Dample	ASSEMBLY	PLY-LEVEL 2	PLY.P2	10721	45	Rosette - A
	ASME Y14.37						
	3-Diade	BOND					
1	Example	ASSEMBLY	PLY-LEVEL 1	PLY.P3	50721	-45	Rosette - A
	ASME Y14.37	PLY GROUP -1					
	3-Blade	BOND					
4	Example	ASSEMBLY	PLY-LEVEL 4	PLY.P4	10721	90	Rosette - A
	ASME Y14.37	PLY GROUP -1					
	3-Diade	BOND					
5	Example	ASSEMBLY	PLY-LEVELS	PLY.PS	10721	0	Rosette - B
	ASME Y14.37	PLY GROUP -1					
321 3	3-Blade	BOND		2	22.22		1000000
6	Example	ASSEMBLY	PLY-LEVEL 6	PLY.P6	10721	45	Rosette - B
	ASME Y14.37						
-	3-Blade	BOND					
7	Esample	ASSEMBLY	PLY-LEVEL.7	PLY.P7	10721	-45	Rosette - B
	ASME Y14.37						
	3-Blade	BOND	PLY-LEVEL II	PLY.PB	10721	90	Rosette - D
	Example ASME Y14.37	ASSEMBLY PLY GROUP -1		PLINE	20722	90	armente - m
	3-Blade	BOND					
9	Example	ASSEMBLY	PLY-LEVEL 9	PLY.P9	10721	0	Rosette - C
	ASME Y14.37	PLY GROUP -1					ranerin - u
	3-Diade	BOND					
10	Dangle	ASSEMBLY	PLY-LEVEL 10	PLY.P1D	10721	45	Rosette - C
	ASME Y14.37						
	3-Blade	BOND					
11	Example	ASSEMBLY	PLY-LEVEL 11	PLY.P11	10721	-45	Rosette - C
	ASME Y14.37	PLY GROUP -1					
	3-Blade	BOND					
12	Example	ASSEMBLY	PLY-LEVEL 12	PLY.P12	10721	90	Rosette - C


New Ply Shape Definitions Address the Needs of Both Design and Manufacturing

Global Product Data Interoperability Summit | 2023

- The new Ply Shape definitions enable the sharing of a common Laminate Table for process integration
- Design edge of Ply/Part for the nominal as-designed representations
- Manufacturing edge of Ply/Part for as-manufactured representations
 - Typical need addressed is representing excess material providing areas for tooling and material application excess

Edge of Ply Options Example

- projected ply shape
 - surface ply shape
 - view ply shape
- laid ply shape
- flat pattern ply shape
- manufacturing projected ply shape

Further Joint LOTAR/ISO/ASME Composite Team Efforts Focused on the Specification and implementation of 10303 Limited Length or Area Indicator (LLAI) Capabilities

ASME Y14.37 LLAI Type

Global Product Data Interoperability Summit | 2023

- A Limited Length or Area Indicator (LLAI) is an intelligent note that adds definition to to composite laminate tables, and constituents such as shapes, points, lines and areas
- Joint Composites team started with the ASME Y14.37 LLAI specification
 - Several spreadsheets created to document LLAI candidates and their definitions
 - A few 10303 objects were added along with some from member companies and vendors

•	New	10303	mod	ule t	o l	be
	ballo	ted thi	s fall			

To be published with AP242 ed4

ASINE 114.37 ELAI TYPE	lacitanei	detials	nepresentation(s)	Requirements	Entity(s)
Overlap Splice Area	String	Overlap direction, overlap width, stagger distance between plies, number of plies between repeasted splice locations	Part shape, Area, Drection, Length	Process document, Note, GD&T	Part, Ply table, Ply
Butt Splice Area	String	Minimum gap, maximum gap, stagger between splices, number of plies between repeated splice locations	Area, Length	Process document, Note, GD&T	Ply table

Type

Geometric

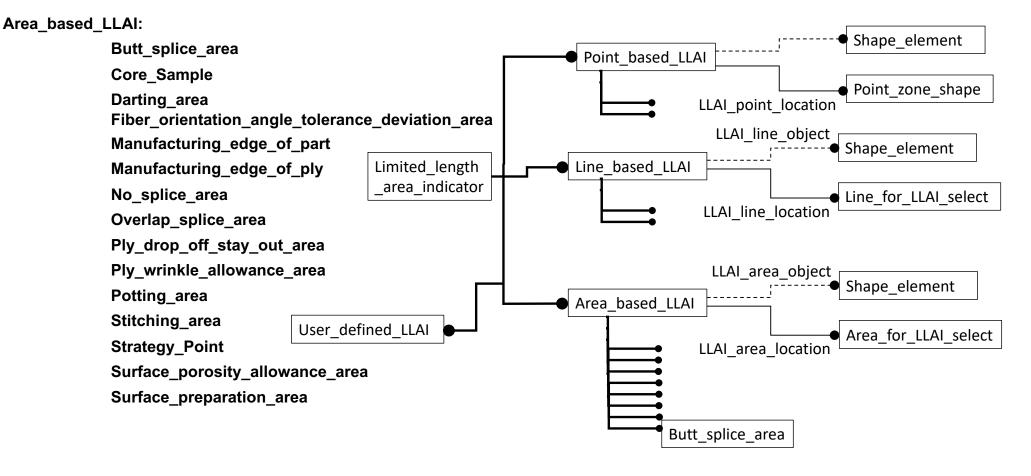
Representation(s) | Requirements | Applicable

ISO 10303

omain	Abstract	Priority	Comments	AP242 Edition	CAx-IF UG (PDES Redmine)	Jira Working Item
Composites	Support for Flat Patterns	P0	Needs update to RP and interop testing.	E1	Feature 43: Composite Ply shape	TCSC410303-401 Update Flat-pattern ply shape
					User Story: 45	
Composites	Support for EOPs	P0	Needs update to RP and interop testing.	E2	Feature 43: Composite Ply shape	TCSC410303-651 Manufacturing Edge of Ply
					User Story: 44	TCSC410303-652 Manufacturing Edge of Part
Composites	Support for LLAI - Additional Geometries and UDA	PO PO	On Hold For CAX-IF RP Development and Test.	ED1/ED2	Capability 6: Composite	TCSC410303-650 User Defined
			Need an addendum in the Recommanded Practices to allow having supplemental geometry/params in		Feature: 113 (LLAI)	
			Composite STEP entities/structure.		User Story: 152 (additional geometry UDA)	
Composites	Support for Seed Points (Producibility Params)	P1	On Hold For CAX-IF RP Development and Test.	ED1/ED2	Capability 6: Composite	TCSC410303-646 Strategy Point
			Need an addendum in the Recommanded Practices to allow having supplemental geometry/params in		Feature: 113 (LLAI)	
			Composite STEP entities/structure.		User Story: 111 (strategy point, course start point)	
			Should follow similar RP as for UDA's in Geometric Sets?		Also:	
					Feature #115: Producibility parameters	
Composites	Support for Start Points	P1	On Hold For CAX-IF RP Development and Test.	ED1/ED2	Capability 6: Composite	TCSC410303-646 Strategy Point
			Need an addendum in the Recommanded Practices to allow having supplemental geometry/params in		Feature: 113 (LLAI)	
			Composite STEP entities/structure.		User Story: 111 (strategy point, course start point)	

LLAI Types are Grouped by Geometric Association

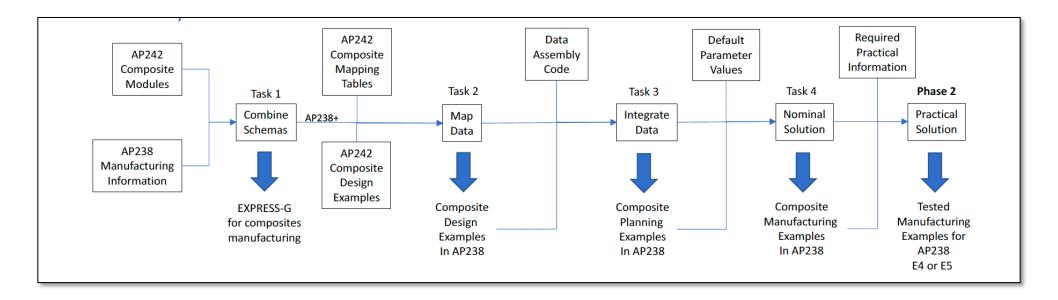
Global Product Data Interoperability Summit | 2023


Point_based_LLAI:
Core Sample,

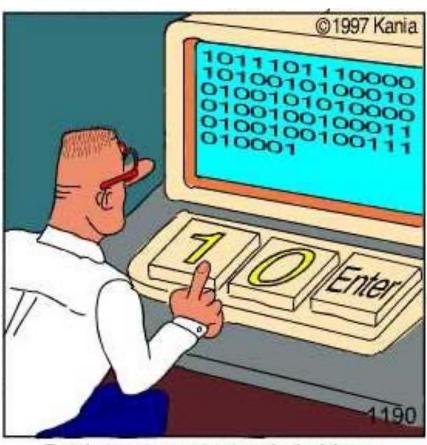
Strategy_point

Line_based_LLAI

Edge_Sealing
Guide Curve


User_defined_LLAI

Future work on propagating 10303 composites capabilities from 10303-242 Mechanical Design and PLM to 10303-238 Manufacturing


- Future work will center around three areas
 - Composite constituent shape representations for manufacturing such as strips, courses, sectors
 - Rosette extensions such as guide curve start points, and multiple guide curves
 - AP242 (Mechanical design) and AP238 (Manufacturing) Integration

Credit for Contributions to These Efforts is Due to Many!

- Contributing People, Groups, and Organizations include (but not limited to!):
 - United States Air Force Research Laboratory (AFRL)
 - US National Institute of Standards and Technology (NIST)
 - South Carolina Research Authority (SCRA)
 - CAx-IF, NAFEMS, PDES, Inc., ProSTEP
 - Airbus, Boeing, BAE Systems, General Dynamics, Liberty Business Associates,
 Lockheed Martin, McDonnel Douglass, Northrop Grumman, PDIT, Saab Scania, Vought
 - AIAA, ANSI, ASME, ISO, PDES
 - And many others that I cannot remember over the last 30+ years...

Questions?

Real programmers code in binary.