'Car Wash For Data': Best Practice for Information & Configuration Management of an industrial Facility.

'Getting engineering data ready for digital twins' Why, How, and What

Leo van Ruijven Croonwolter&dros BV; The Netherlands

GLOBAL PRODUCT DATA INTEROPERABILITY SUMMIT 2023

dr. ing. L.C. (Leo) van Ruijven MSc; Principal Systems Engineer

- > 25 years employee of TBI in the Netherlands (EPC contractor in building and construction)
 Responsible for systems engineering and supporting information management of major infrastructure projects.
- > 20 years Chairman Dutch standards committee NC 181184 'Information integration and Interoperability'.
- Member of ISO TC 184/SC4 (Industrial Data), initiator and editor of ISO 15926-11:2023.
- Member Executive Committee USPI, a Dutch foundation for data standards within process industry.
- PhD on Collaboration, Systems Engineering, and Information Management in building and construction (2018).
- Initiator and architect of the 'non-graphical data' part of the CDE in the Pallas Project.

M +31651580662 | leo.vanruijven@croonwolterendros.nl

PALLAS is replacing the ageing High Flux Reactor (HFR) producing medical isotopes at location Petten, the Netherlands. Goal: data driven operation and asset management.

The challenge of Information Management in (one off) projects based to a greater or lesser extent on SE Global Product Data Interoperability Summit | 2023 Design & construct process & tooling **Engineering company** information ISO 15288 **Architect** "System Life Cycle Processes" Fragmentation over involved disciplines and or parties **Design & construct Design & construct** process & tooling process & tooling **Specialty engineer** Client / investor Based on semantic data standards **Design & construct** process & tooling Main contractor Sub contractor / supplier

The challenge of Configuration Management over the total life cycle (Concept of a Digital Twin)

Global Product Data Interoperability Summit | 2023

"As designed" configuration documentation (How) (what we say that there is and say how it behaves)

"As-is" Actual physical and operational configuration (What) (what there actually is and how it really behaves)

Solution direction PALLAS, based on ISO and W3C data integration and semantic standards

Global Product Data Interoperability Summit | 2023

"As designed" configuration documentation (How) (what we say will be there and how it will behave)

"As-is" Actual physical and operational configuration (What) (what there actually is and how it really behaves)

Breakdown structures are the basis of a project and the content of the CDE (ISO / IEC 81346)

Examples of "models" from which data is represented by nodes in the breakdown structures

The life cycle model of Product Breakdown Structure elements performing a 'process unit operation'

Structure of the Pallas ontology (compliant with ISO 15926-11:2023)

Global Product Data Interoperability Summit | 2023 rdfs:Resource rdfs:subClassOf W3C RDFS rdfs:Class rdf:Statement rdf:Property rdf:type thing possible individual (Domain independent) ISO 15926-11 core classes physical object information object ISO 15926-11 relationships activity event State rdfs:domain rdfs:range Semantic relationship e.g. physical object spatial location spatial location iim:isWithin approx. 200 predefined relationships Project data rdfs:object rdfs:subject defined by **GUID A** iim:isWithin Room 8 pump xyz

rdfs:predicate

statements

'Statements' form the basis for implementation of the ontology and for configuration management

Fragment of the relationships defined in the IIM (compliant with the ontology of ISO 15926-11:2023) supporting multi domain MBSE, digital twins, and asset life cycle management

Global Product Data Interoperability Summit | 2023

basic semantic relationships

iim:Thing_isConditionFor_Thing
iim:Thing_isConditionFor_Thing
iim:Thing_isConditionFor_Thing
iim:Thing_isCoveredBy_Thing
iim:Thing_isCreatedBy_Thing
iim:Thing_isDefinedBy_Thing
iim:Thing_isDerivedFrom_Thing
iim:Thing_isDerivedFrom_Thing
iim:Thing_isDerivedFrom_Thing
iim:Thing_isDerivedFrom_Thing
iim:Thing_isFulfilledBy_Thing
iim:Thing_isGuidedThrough_Thing
iim:Thing_isHierarchicallySubordinate
iim:Thing_isImplementedBy_Thing
iim:Thing_isInitiatedBy_Thing
iim:Thing_isInitiatedBy_Thing
iim:Thing_isInitiatedBy_Thing
iim:Thing_isInstalledAs_Thing
iim:Thing_isInvolvedIn_Thing
iim:Thing_isMadeOf_Thing
iim:Thing_isManufacturedBy_Thing

specialized relationship (rdfs:subPropertyOf)

iim:Condition_isConditionFor_Process				
iim:Condition_isConditionFor_Transition				
iim:StateOfIndividual_isConditionFor_Transition				
iim:PhysicalObject_isCoveredBy_PhysicalObject				
iim:Statement_isCreatedBy_Party				
iim:Baseline_isDefinedBy_Milestone				
iim:Requirement_isDerivedFrom_Objective				
iim:Requirement_isDerivedFrom_Statement				
iim:Statement_isDerivedFrom_Document				
iim:Statement_isDerivedFrom_DocumentSection				
iim:PhysicalObject_isFulfilledBy_PhysicalObject				
iim:Stream_isGuidedThrough_SpatialLocation				
iim:Requirement_isHierarchicallySubordinatedTo_Requirement				
iim:PhysicalObject_isImplementedBy_PhysicalObject				
iim:Interaction_isInitiatedBy_Activity				
iim:Interaction_isInitiatedBy_Stream				
iim:Requirement_isInitiatedBy_PartyRoleAndDomain				
iim:PhysicalObject_isInstalledAs_PhysicalObject				
iim:Individual_isInvolvedIn_Risk				
iim:PhysicalObject_isMadeOfByClass_TypeOfMatter				
iim:ManufacturerModel hasManufacturer Partv				

rdfs:domain rdfs:range

iim:Conditi	ion	iim:Process
iim:Conditi	ion	iim:Transition
iim:StateO	fIndividual	iim:Transition
iim:Physica	alObject	iim:PhysicalObject
iim:Statem	ent	iim:Party
iim:Baselin	ie	iim:Milestone
iim:Require	ement	iim:Objective
iim:Require	ement	iim:Statement
iim:Statem	ent	iim:Document
iim:Statem	ent	iim:DocumentSection
iim:Physica	alObject	iim:PhysicalObject
iim:Stream		iim:SpatialLocation
l iim:Require	ement	iim:Requirement
iim:Physica	alObject	iim:PhysicalObject
iim:Interac	tion	iim:Activity
iim:Interac	tion	iim:Stream
iim:Require	ement	iim:PartyRoleAndDomain
iim:Actual	MaterialisedPhysica	iim: Designed Functional Physical Object
iim:Possibl	eIndividual	iim:Risk
iim:Physica	lObject	iim:ClassOfMatter
iim:Manufa	acturer Model	iim:Party

Fragment of the structure of the domain specific Pallas RDL (physical object part)

Example of the use of the IIM and RDL (based on ISO 15926-11:2023)

The previous example implemented by a Named Graph in the Graph Database of the CDE

Information Management: controlling information input and output of engineering processes

Global Product Data Interoperability Summit | 2023

INTEROPERABILITY 2

Data cleaning and mapping process (based on ISO 8000 Data Quality): Assuring reliability and integrity for acceptance of the CDE as a Single Source of Truth

Recap of the PALLAS digital eco system for managing of engineering & facility life cycle data

Recap CDE approach PALLAS project (ontology driven rather than document driven)

Global Product Data Interoperability Summit | 2023

Information:

- Select, tailor, and implement data standards, develop iterative an IIM and RDL ("project ontology")
- Focus on life cycle information streams, the models behind them and their owners and stakeholders.
- Agree on data exchange requirements with the engineering environment (for tool export compliancy).
- Apply principles of ISO 8000: syntactic, semantic and pragmatic Data Quality.

Technology:

- Use semantic modeling technology to cope with the richness of Systems Engineering data
- Select a flexible 'linked data' platform, capable of handling Named Graph with reified triples.
- Use data standards and open-source technology to ensure seamless migration for decades to come.
- The PALLAS project succeeded in its mission by limiting itself to using only RDFS combined with SPARQL.

Human and organization:

- Clear vision and visual support from senior management / leadership.
- Availability of required (new) competences and new roles acknowledged.
- Succeeded in **bridging the gap** between ontology, engineering environment and engineering tooling.
- Organized integration of domain knowledge, semantic modeling knowledge, and IT.

Adoption of the Pallas concept: It is not an "one fits all" solution

Global Product Data Interoperability Summit | 2023

However, it can be tailored and scaled with respect to:

- the ambition level of digitalization and
- an appropriate balance between documents and data Considering:
- Partners in a project consortium all have their own methods, standards and tools
- Partners has different maturity in the practice of data quality and data modeling skills
- Contracts in many cases don't take explicit into count data quality and data exchange
- The vision and support of senior management is crucial for what can be achieved
- IT platforms and software supporting full data integration are still in development
- In general, within companies there is lack of knowledge of data integration standards
- The gap between ontology developers and knowledge of implementation in industry is huge

'Car Wash For Data':

Best Practice for Information & Configuration

Management of an industrial Facility.

Getting engineering data ready for digital twins

Q&A

Leo van Ruijven Croonwolter&dros BV; the Netherlands

